PMRA Submission Number {..... EPA MRID Number 50308302

{.....}

456399 EPA DP Barcode OECD Data Point {.....} 50308302 **EPA MRID** EPA Guideline 850.2300 Test material: Diuron Technical Purity: In-report: 98.4%; Certificate of analysis: 99.1% Common name Diuron Chemical name: IUPAC: 3-(3,4-dichlorophenyl)-1,1-dimethylurea CAS: N'-(3,4-dichlorophenyl)-N,N-dimethylurea CAS No.: 330-54-1 Synonyms: DPX-14740 Primary Reviewer: Christie E. Padova **Date:** 03-11-2020 Staff Scientist, CDM/CSS-Dynamac JV

PMRA Data Code

Secondary Reviewer: Julie Burns Signature: Staff Scientist, CDM/CSS-Dynamac JV Date: 04-14-2020

Tellez, Digitally signed by Tellez, Peter Date:
Peter 2020.11.03
08:17:01 -05'00' Primary Reviewer: Peter Tellez Date: Biologist, EPA/OPP/EFED/ERB1

Secondary Reviewer(s): Kristina Garber Date: Digitally signed by

Reference/Submission No.: {......

Senior Science Advisor, EPA/OPP/EFED/ERB1

Data Requirement:

Company Code [For PMRA] **Active Code** [For PMRA] **Use Site Category** [For PMRA] EPA PC Code 035505

Date Evaluation Completed: 6Oct20

CITATION: Temple, D.L., et al. 2007. Diuron (DPX-14740) Technical: A Reproduction Study with the Mallard. Unpublished study performed by Wildlife International, Ltd., Easton, Maryland. Laboratory Project No. 112-584. Study sponsored by E.I. du Pont de Nemours and Company, Wilmington, Delaware. Study initiated April 11, 2007 and completed November 28, 2007.

KRISTINA GANDER Date: 2020.12.11 13:14:04 -05'00'

KRISTINA GARBER

This Data Evaluation Record may have been altered by the Environmental Fate and Effects Division subsequent to signing by CDM/CSS-Dynamac JV personnel. The CDM/CSS-Dynamac Joint Venture role does not include establishing Agency policies.

PMRA Submission Number {.....}

EPA MRID Number 50308302

EXECUTIVE SUMMARY

The one-generation reproductive toxicity of diuron to 16 pairs per level of 27-week old mallard duck (*Anas platyrhynchos*) was assessed over *ca.* 20 weeks. Diuron technical was administered to the birds in the diet at nominal concentrations of 0 (control), 10, 33, 100, and 160 mg ai/kg diet. Reviewer-calculated mean-measured concentrations were <2.50 (<LOQ, control), 9.82, 32.9, 100, and 159 mg ai/kg diet.

The reviewer's analysis detected a significant reduction in eggs laid per pen and adult male and female body weight gain, with reductions noted at \geq 32.9 mg ai/kg diet. Adult male body weight gain was also significantly reduced in a dose-dependent manner at the \geq 100 mg ai/kg diet treatment levels. No other treatment related effects were observed on any adult, reproductive, or offspring endpoint. The NOAEC was determined to be 9.82 mg ai/kg diet, based on 23% decrease in eggs laid (per pen) and an 82% reduction in female body weight gain at 32.9 mg ai/kg diet.

This study is scientifically sound and is classified as acceptable.

Results Synopsis

Test Organism Size/Age (mean Weight): 27 weeks old; 844 to 1308 g

NOAEC: 9.82 mg ai/kg diet LOAEC: 32.9 mg ai/kg diet

<u>Endpoint(s)</u> affected: Eggs laid per pen, adult male and female body weight gain <u>Most sensitive endpoint(s)</u>: Eggs laid per pen and adult female body weight gain

I. MATERIALS AND METHODS

GUIDELINE(S) FOLLOWED: The study protocol was based upon procedures outlined in U.S. EPA

Pesticide Assessment Guidelines, §71-4 (1982), U.S. EPA Ecological Effects Test Guidelines OPPTS 850.2300 (1996), OECD Test Guideline 206

(1984), and ASTM Standard E1062-86 (1986).

Deviation(s) from OCSPP 850.2300 (2012), OCSPP 850.2000 (2012), and/or OECD 206 guidance included:

- 1. The physicochemical properties of the test material (e.g., solubility, vapor pressure, etc.) were not reported and are considered a prerequisite for an avian reproduction study under OECD 206 and OCSPP 850.2000 guidance.
- 2. The pre-test mortality rate was not reported. OCSPP guidance specifies that birds should not be used for testing if more than 3% of either sex of a population of birds becomes debilitated during the 2-week acclimation period.
- 3. OCSPP guidance states that test birds should be exposed (to the test substance) for at least 10 weeks prior to the onset of egg laying. In this study, birds were exposed for 9 weeks prior to the egg-laying phase.
- 4. According to the study author, the temperature in a brooder pen used to house offspring was inadvertently out of range on two occasions, but no raw data were provided.
- One offspring from the 100 mg ai/kg diet treatment group could not be accounted for at 14-day old body weight measurement. Therefore, this offspring was assumed to have died and is not included as a 14-day old survivor.
- 6. On two occasions, the weekly feed consumption for one pen could not be determined over a seven-day period.

PMRA Submission Number {.....}

The deviations did not impact the acceptability of this study.

Signed and dated GLP, Quality Assurance, and No Data Confidentiality statements were provided. The study was conducted in accordance with the GLP Principles of the U.S. EPA (40 CFR, Part 160) with the following exceptions: routine water and food contaminant screening analyses. The contaminant screening analyses were performed using standard methods and

EPA MRID Number 50308302

a certified laboratory.

A. MATERIALS:

COMPLIANCE:

1. Test Material: Diuron technical (DPX-14740-245)

Description: Solid

Lot No./Batch No.: APR05GB250 (lot no.)

Purity: In-report purity of 98.4%; Certificate of analysis purity: 99.1% (expiration

date of September 7, 2008)

Stability of compound

under test conditions: The 7-day ambient stability of the test substance in the treated feed was

verified under actual-use conditions during Week 1. Recoveries averaged

89 to 94% of initial-measured concentrations for all levels.

Storage conditions of

test chemicals: Ambient conditions

Physicochemical properties of Diuron.

Parameter	Values	Comments
Water solubility at 20°C	Not reported	
Vapor pressure	Not reported	
UV absorption	Not reported	
рКа	Not reported	
Kow	Not reported	

(OECD recommends water solubility, stability in water and light, pKa, Pow, and vapor pressure of test compound)

2. Test organism:

Table 1: Test organism

Danamatan	Remarks Details	Remarks
Parameter	Details	Criteria
Species (common and scientific names):	Mallard duck	

PMRA Submission Number {.....}

EPA MRID Number 50308302

Parameter	Details	Remarks
		Criteria
	(Anas platyrhynchos)	Recommended species include a wild waterfowl species, preferably the mallard (Anas platyrhynchos) or an upland game species, preferably the Northern Bobwhite (Anas platyrhynchos)
Age at Study Initiation:	27 weeks	
		Birds approaching their first breeding season should be used.
Body Weight: (mean and range)	Overall range: 844 to 1308 g Group means: 1113 to 1119 g for males	Body weights were recorded at test initiation, at the end of Weeks 2, 4, 6, and 8, and at study termination (Week 20).
	1015 to 1026 g for females	Body weights should be recorded at test initiation and at biweekly intervals up to week eight or up to the onset of egg laying and at termination.
Source:	Whistling Wings, Inc., Hanover, Illinois	Birds were phenotypically indistinguishable from wild stock. All birds were from the same hatch.
		All birds should be from the same source.

B. STUDY DESIGN:

1. Experimental Conditions

a. Range-finding study: In a 6-week pilot reproduction study (EAG Laboratories Project Number 112-583), groups of mallards (five pair per level) were fed diuron technical at dietary concentrations of 0 (control), 10, 33, 100, and 160 mg ai/kg diet. Mortality, clinical signs of toxicity, weight gain, feed consumption, and egg production were monitored, and results are summarized in the following table.

There was no treatment-related mortality, overt signs of toxicity, or treatment-related effects on feed consumption at any concentration tested. There were also no treatment-related effects on adult body weight at the 10, 33, or 100 mg ai/kg diet test levels. At the 160 mg ai/kg level, there was a reduction in hen body weight that was considered treatment related. In addition, it was reported that reductions in egg production were indicated at the 100 and 160 mg ai/kg diet levels. Test concentrations for the definitive study were based upon the pilot study results and in consultation with the Sponsor. Full results for the pilot study can be found in Appendix XV of the study report.

Table 2: Pilot Study Summary of Results

PMRA Submission Number {......}

Parameter	Control	trol 10 mg ai/kg 33 mg ai/kg		100 mg ai/kg	160 mg ai/kg	
Adult Parameters						
No. replicates	5	5	5	5	5	
No. birds	10	10	10	10	10	
Mortality	0	0	0	0	1(3)	
Food consumption (g/bird/day) (a)	163	173	168	166	166	
Weight change (g) of females (Weeks 0 to 6):	16	47	18	42	-100	
Weight change (g) of males (Weeks 0 to 6):	95	104	89	-19	46	
Eggs laid ^(b)	63	7 9	33	33 40		
Eggs laid/hen/day (b)	0.30	0.38	0.16	0.19	0.08	
	Rep	roductive Perform	nance (e)			
Eggs laid	20	29	3	16	3	
Eggs cracked/damaged	0	0	0	0	0	
Eggs set	20	29	3	15	3	
Viable embryos	20	28	0	15	3	
Live 3-week embryos	20	28	0	15	2	
Hatchlings	18	22	0	7	0	
14-Day old survivors	18	22	0	7	0	

⁽a) Reviewer calculated.

⁽b) Based on 6 weeks of egg production during Weeks 1 through 6.
(c) Based on the last 14 days of eggs production during Weeks 5 and 6 (Days 29-42).

PMRA Submission Number {......}

EPA MRID Number 50308302

b. Definitive Study:

Table 3: Experimental Parameters

D	D.4-9.	Remarks
Parameter	Details	Criteria
Acclimation period:	2 weeks	Diets were supplemented with limestone, which raised the calcium
Conditions (same as test or not):	Similar to test (≤8-hours of light	level to 3% for breeding.
P. I	per day, fed same basal diet as test)	Offspring were fed basal ration without the addition of test substance or limestone.
Feeding:	Adult birds were fed a diet formulated by Cargill Animal Nutrition (Shippensburg, Pennsylvania) <i>ad libitum</i> , and supplied with public water.	Recommended observation period includes a 2-3 week health observation period prior to selection of birds for treatment. Generally, birds should be healthy without
Health (any mortality observed):	Pre-test mortality was not reported. Birds that did not appear healthy or were outside the weight range were excluded from the study.	excess mortality. Feeding should be ad libitum, and sickness, injuries or mortality should be noted.
Test duration Pre-laying exposure: Egg-laying exposure: Withdrawal period, if used:	9 weeks 11 weeks 	Recommended pre-laying exposure duration: At least 10 weeks prior to the onset of egg-laying. Recommended exposure duration with egg-laying: At least 10 weeks. Recommended withdrawal period: If reduced reproduction is evident, a
		withdrawal period of up to 3 weeks should be added to the test phase.

PMRA Submission Number {......}

Parameter	Details	Remarks
rarameter	Details	Criteria
Pen (for parental and offspring) Size:	Parental: 75 x 90 cm, height of 45 cm Offspring: 62 x 92 x 25.5 cm high	Pens Pens should have adequate room and be arranged to prevent crosscontamination. Materials
Construction materials:	Parental: Vinyl-coated wire mesh. Offspring: Vinyl-coated wire mesh	Recommended materials include nontoxic material and nonbinding material, such as galvanized steel. Number At least 5 replicate pens should be
Number:	16 parental pens/treatment level	used for mallards housed in groups of 7. For other arrangements, at least 12 pens should be used, but considerably more may be used if birds are kept in pairs. Chicks should be housed according to parental grouping.
Number of birds per pen (male: female)	2 birds/pen (1 male:1 female)	
		One male and one female per pen should be used. For quail, one male and two females should be used. For ducks, two males and five females should be used.
Number of pens per group/treatment Negative control: Solvent control: Treated:	16 pens 16 pens/treatment	At least 12-16 pens should be used, but considerably more if birds are kept in pairs.

PMRA Submission Number {......}

D4	D.4.3.	Remarks
Parameter	Details	Criteria
Test concentrations (mg ai/kg diet) Nominal: Measured:	0 (negative control), 10, 33, 100, and 160 mg ai/kg diet <2.50 (<loq, *reviewer-calculated<="" 100,="" 159="" 32.9,="" 9.82,="" ai="" and="" control),="" diet*="" kg="" mg="" td=""><td>Recommended test concentrations include at least two concentrations other than the control; three or more will provide a better statistical analysis. The highest test concentrations should show a significant effect or be at or above the actual or expected field residue</td></loq,>	Recommended test concentrations include at least two concentrations other than the control; three or more will provide a better statistical analysis. The highest test concentrations should show a significant effect or be at or above the actual or expected field residue
Maximum labeled field residue anticipated and source of information:	Not specified	The highest test concentrations should show a significant effect or be at or above the actual or expected field residue level. The source (i.e., maximum label rate in lb ai/A and ppm), label registration no., label date, and site should be cited]
Solvent/vehicle, if used Type: Amount:	N/A	Recommended solvents include corn oil or other appropriate vehicle not more than 2% of diet by weight
Was detailed description and nutrient analysis of the basal diet provided? (Yes/No)	Yes	A commercial breeder feed or an equivalent that is appropriate for the test species is recommended.

PMRA Submission Number {......}

Parameter	Details	Remarks
	2	Criteria
Preparation of test diet	Test diets were prepared by mixing diuron into a premix that was used for weekly preparation	Test diets were presented to the birds on Friday of each week.
	of the final diet. Premixes were prepared every 3 to 4 weeks from April 12 to August 20, 2007.	A premixed diet containing the test substance should be mechanically mixed with basal diet. If an evaporative vehicle is used, it should
	If not used immediately for preparation of final diet, portions of the premixes were placed in plastic bags and stored frozen until needed.	be completely evaporated prior to feeding.
	Once weekly, the appropriate premix was combined with additional basal ration and limestone and mixed for 20 minutes in a Patterson-Kelley® Twin Shell Blender.	
Indicate whether stability and homogeneity of test material in diet determined (Yes/No)	Yes	See Reviewer's Comments section.
Were concentrations in diet verified by chemical analysis?	Yes	See Reviewer's Comments section.
Did chemical analysis confirm that diet was stable?	Yes	See Reviewer's Comments section.
Homogeneous?	Yes	
Feeding and husbandry	Feeding and husbandry conditions appeared to be adequate, given guideline recommendations.	

PMRA Submission Number {......}

The state of the s	D 4 3	Remarks
Parameter	Details	Criteria
Test conditions (pre-laying) Temperature: Relative humidity:	22.3 ± 0.9°C 75.0 ± 9.0%	Temperature and relative humidity ranges were for the entire experimental period.
Photoperiod:	≤8 hr light/day through Week 9 and 17 hr light/day thereafter	The air handling system was designed to vent up to 15 room air volumes every hour and replace them with fresh air.
	Illumination was provided by fluorescent lights that closely approximated the color spectrum of noonday sunlight. During the study, the birds received a mean light intensity of <i>ca.</i> 182 lux (<i>ca.</i> 17 ft. candles).	Recommended temperature: about 21°C (70°F) Recommended relative humidity: about 55% Recommended lighting First 8 weeks: 7 h per day. Thereafter: 16-17 h per day. At least 6 foot-candles are recommended at bird level.
Egg Collection and Incubation		
Egg collection and storage Collection interval: Storage temperature: Storage humidity:	Daily 14.8 ± 0.7°C 81 ± 2%	Eggs should be collected daily; recommended egg storage temperature is approximately 16°C (61°F); recommended humidity is approximately 65%. Recommended collection interval: daily
Were eggs candled for cracks prior to setting for incubation?	Yes	Eggs should be candled on day 0
Were eggs set weekly?	Yes	Eggs to be incubated were washed in a commercial egg washer with a chlorine-based detergent to reduce the possibility of pathogen contamination.
When candling was done for fertility	Eggs were candled again on Days 14 (embryo viability) and 21 (embryo survival).	Quail: approx. day 11 Ducks: approx. day 14
When the eggs were transferred to the hatcher	Day 24	Bobwhite: usually day 21 Mallard: usually day 23

PMRA Submission Number {......}

ъ	D. (1)	Remarks
Parameter	Details	Criteria
Hatching conditions Temperature:	Hatcher: 37.3 ± 0.0 °C Brooder: Ca . 38 °C until 5-7 days post-hatch, then ca . 29 °C Room: 26.2 ± 1.1 °C	Recommended temperature is 39°C (102°F) Recommended humidity is 70%
Humidity:	Hatcher: $55.0 \pm 0.0\%$ Brooder: not reported Room: $72.6 \pm 5.8\%$	
Photoperiod:	16 hours light/day	
Day the hatched eggs were removed and counted	Days 27 or 28	Eggs for Bobwhite should be removed on day 24; for mallard on day 27
Were eggshells washed and dried for at least 48 hours before measuring?	Yes	
Egg shell thickness No. of eggs used:	One egg was collected from each odd-numbered pen during odd-numbered weeks and one egg was collected from each even-numbered pen during even-numbered weeks, for eggshell measurements.	Newly hatched eggs should be collected at least once every two weeks. Thickness of the shell plus membrane should be measured to the nearest 0.01 mm with 3 - 4 measurements per shell.
Intervals:	Weekly	
Mode of measurement:	Five points around the girth of the egg were measured to the nearest 0.002 mm using a micrometer.	
Reference chemical, if used	None used	

PMRA Submission Number {......}

EPA MRID Number 50308302

2. Observations:

Table 4: Observations

Parameter	Details	Remarks		
Parameters measured				
Parental (mortality, body weight, mean feed consumption) Egg collection and subsequent development (no. of eggs laid, no. of eggs cracked, shell thickness, no. of eggs set, no. of viable embryos, no. of live 3 week embryos, no. hatched, no. of 14-day survivors, average weight of 14-d old survivors, mortality, gross pathology, others)	- mortality - signs of toxicity - body weight - feed consumption - necropsy - eggs laid - eggs cracked - egg fertility - egg shell thickness - eggs set - viable 14-day embryos - live 3-week embryos - hatchlings - hatchlings - hatchling body weight - 14-day-old survivors - 14-day-old survivor body weight	Necropsies were performed on all adult birds. Recommended endpoints measured include: Eggs laid/pen Eggs cracked/pen Eggs set/pen Viable embryos/pen Live 3-week embryos/pen Normal hatchlings/pen 14-day-old survivors/pen 14-day-old survivors/pen Weights of 14-day-old survivors (mean per pen) Egg shell thickness Food consumption (mean per pen) Initial and final body weight (mean per pen)		
Indicate if the test material was regurgitated	Not reported			
Observation intervals (for various parameters)	Parental and offspring mortality and signs of toxicity were recorded daily. Parental body weights were recorded at test initiation, at the end of Weeks 2, 4, 6, 8, and at termination (Week 20). Offspring were weighed when removed from the hatcher and at 14 days. Parental feed consumption was measured weekly.	Body weights and food consumption should be measured at least biweekly		
Were raw data included?	Yes			

PMRA Submission Number {.....}

EPA MRID Number 50308302

II. RESULTS AND DISCUSSION:

A. MORTALITY:

There were three total mortalities in this experiment. A single mortality in the nominal 33 mg ai/kg diet group was a female found dead during Week 19 without having exhibited prior clinical signs of toxicity. Findings at necropsy included a large mass in the left atrium, multiple fluid-filled cysts of the liver, lesions of egg yolk peritonitis, and a large mass (ca. 5.0 x 2.0 cm) on the right kidney. Two mortalities occurred in the 160 mg ai/kg diet group. One was a female that was found dead during Week 18 without having exhibited prior clinical signs of toxicity, and no apparent cause of death was discovered at necropsy. The second mortality in the group was a male found dead during Week 19. Effects observed prior to death included reduced reaction to external stimuli, loss of coordination, lower limb weakness, a ruffled appearance, and wing droop. Necropsy revealed emaciation, a poor feather coat, a small and pale spleen, a bile-stained gizzard, and autolysis in the respiratory and gastrointestinal tracts. Due to the nature of findings at necropsy, none of the mortalities were considered related to treatment.

No treatment-related finds were observed upon necropsy of surviving birds at study termination.

B. REPRODUCTIVE AND OTHER ENDPOINTS:

<u>Abnormal Effects/Behavior</u>: No overt signs of toxicity were observed at any treatment level. Incidental observations included those associated with injuries and pen wear. In addition, one female in the control group suffered a prolapsed uterus that was successfully reduced during the study.

<u>Food Consumption</u>: No significant differences in food consumption were observed between the control group and the 10, 33, and 100 mg ai/kg diet treatment groups during the study. At the 160 mg ai/kg diet level, significant increases in feed consumption (due to wastage of the diet) were observed during Weeks 5, 6, 8, and 9 (p<0.05). Overall feed consumption averaged 163 g/bird/day for the control level, and 179, 167, 166, and 172 g/bird/day for the 10, 33, 100, and 160 mg ai/kg diet treatment levels, respectively, with estimated overall mean dietary doses of 0, 1.7, 5.1, 15.6, and 26.6 mg ai/kg/day, respectively.

Body Weight: No significant differences in body weight were observed between the control group and the 10, 33, and 100 mg ai/kg diet treatment groups during the study. The study authors reported that there was a slight reduction in weight gain among hens in the 33 and 100 mg ai/kg diet levels during the reproductive phase of the test, but it was not a significant effect. At the 160 mg ai/kg diet level, significant differences in body weight were indicated for male birds at Weeks 2, 4, and 6, and in female birds at test termination. For the 0 (control), 10, 33, 100, and 160 mg ai/kg diet levels, total changes in body weight averaged 77, 39, 43, 22, and 14 g for males, respectively, and 113, 97, 21, 27, and -34 g for females, respectively.

Reproductive Effects: There were no significant differences between the control and 10 mg ai/kg diet level for any reproductive endpoint. At the 33 mg ai/kg diet level, there were significant reductions in the numbers of hatchlings and 14-day old survivors as percentages of the maximum number of eggs set. It was reported these reductions were reflective of a slight reduction in egg production and a reduction in viable embryos of eggs set. At the 100 and 160 mg ai/kg diet levels, there were significant reductions in the number of eggs laid as a percentage of maximum eggs laid, and in the numbers of hatchlings and 14-day old survivors as percentages of the maximum number of eggs set. In addition, although not significant, there were reductions in eggshell thickness at the 100 and 160 mg ai/kg diet levels that may have been related to treatment.

PMRA Submission Number {.....}

EPA MRID Number 50308302

Table 5: Reproductive and Other Parameters (nominal concentrations; study author-reported).

Parameter	Control	10 mg ai/kg	33 mg ai/kg	100 mg ai/kg	160 mg ai/kg	NOAEC/ LOAEC
No. laying pairs	16	16	15	16	14	
Eggs laid	763	662	549	503	253	
Eggs laid/hen	48	41	37	31	18	
Eggs cracked	8	8	4	10	3	
Eggs set	672	587	481	428	214	Not statistically
Viable embryos	579	519	400	335	184	assessed
Live 3-week embryos	572	515	394	333	179]
Hatchlings	499	412	297	289	149	
14-day old hatchling survivors	497	407	294	285	148	
Eggs laid/hen/day ^(a)	0.62	0.54	0.48	0.41	0.23	
Eggs laid/maximum laid (%)	67	58	52	44*	26**	33 mg ai/kg 100 mg ai/kg
Eggs cracked/eggs laid (%)	1	1	1	2	1	
Viable embryos/eggs set (%)	88	90	77	79	85	160 mg ai/kg >160 mg ai/kg
Live 3-Week embryos/ viable embryos (%)	99	99	99	100	97	
Hatchlings/live 3-Week embryos (%)	87	77	79	84	82	
Hatchlings/maximum set (%)	48	40	31*	28*	16**	10 mg ai/kg 33 mg ai/kg

Data Evaluation Record on the Reproductive Effects of Diuron on Mallard (*Anas platyrhynchos***)**PMRA Submission Number {.....} EPA MRID Number 50308302

Parameter	Control	10 mg ai/kg	33 mg ai/kg	100 mg ai/kg	160 mg ai/kg	NOAEC/ LOAEC
14-Day old survivors/hatchlings (%)	100	99	99	99	99	160 mg ai/kg >160 mg ai/kg
14-Day old survivors/maximum set (%)	48	39	30*	27*	16**	10 mg ai/kg 33 mg ai/kg
Shell thickness (mm \pm SD)	0.381 ± 0.025	0.382 ± 0.028	0.384 ± 0.020	0.369 ± 0.024	0.363 ± 0.031	
Hatchling weight (g ± SD)	35 ± 2	35 ± 2	36 ± 4	35 ± 3	34 ± 3	160 mg ai/kg
14-day old survivors' weight (g ± SD)	294 ± 25	288 ± 27	293 ± 27	296 ± 26	290 ± 19	>160 mg ai/kg
Mean food consumption $(g/bird/day \pm SD)^{(b)}$	163	179	167	166	172	
Weight (g ± SD) of parent females at test initiation: at Week 8: at test termination:	1015 1052 1128	1020 1054 1117	1026 1042 1051	1021 1037 1047	1021 1006 978**	100 mg ai/kg 160 mg ai/kg
Weight (g ± SD) of parent males at test initiation: at Week 8: at test termination:	1119 1172 1196	1114 1140 1153	1113 1133 1160	1119 1119 1141	1119 1098 1132	

⁽a) Based on 77 days of egg production.
(b) Standard deviations were not reported.

^{*} Significantly different from the control at p<0.05.

** Significantly different from the control at p<0.01.

PMRA Submission Number {.....}

EPA MRID Number 50308302

C. REPORTED STATISTICS:

The following variables were statistically analyzed: adult body weight, adult feed consumption, eggs laid of maximum laid (%), eggs cracked of eggs laid (%), viable embryos of eggs set (%), live 3-week embryos of viable embryos (%), hatchlings of 3-week embryos (%), 14-day old survivors of hatchlings (%), hatchlings of eggs set (%), 14-day old survivors of eggs set (%), hatchlings of maximum set (%), 14-day old survivors of maximum set (%), egg shell thickness, and offspring body weights. Results were reported in terms of nominal concentrations.

An analysis of variance (ANOVA) followed by Dunnett's Multiple Comparisons Test was used to compare the three treatment means with the control group mean and assess the statistical significance of the observed differences. Sample units were the individual pens within each experimental group, except adult body weights where the sample unit was the individual bird. Percentage data were examined following an arcsine square root transformation for reproductive parameters.

D. VERIFICATION OF STATISTICAL RESULTS:

Statistical Method: The reviewer assessed the survival, body weight, food consumption, and reproduction endpoints using mean-measured concentrations in CETIS version 1.9.6.12 statistical software with backend database settings updated by EFED on 07/25/17. The eggs laid per pen, eggshell thickness, adult food consumption, and all weight endpoints were confirmed to be normally distributed and have equal variances using Shapiro-Wilk's and Bartlett's tests, respectively, and were therefore analyzed using Dunnett's and William's tests. The reproduction endpoints (based on eggs laid, eggs not cracked, eggs set, 14-day viable embryos, 21-day live embryos, hatched, and 14-day normal hatchlings) had non-normal distribution and unequal or equal variances using Shapiro-Wilk's and Bartlett's or Levene's tests, respectively, and were therefore analyzed using the Jonckheere-Terpstra Step-Down or Wilcoxon with Bonferroni Adjustment Test.

NOAEC: 9.82 mg ai/kg diet LOAEC: 32.9 mg ai/kg diet

<u>Endpoint(s)</u> affected: Eggs laid per pen, adult male and female body weight gain <u>Most sensitive endpoint(s)</u>: Eggs laid per pen and adult female body weight gain

PMRA Submission Number {.....}

EPA MRID Number 50308302

Table 6: Reproductive and Other Parameters (mean-measured concentrations; reviewer-reported).

Parameter	Control	9.82 mg ai/kg	32.9 mg ai/kg	100 mg ai/kg	159 mg ai/kg	NOAEC/ LOAEC
Eggs laid/pen	47.7	41.3	36.6*	31.4*	18.1*	9.82 mg ai/kg 32.9 mg ai/kg
Eggs not cracked/eggs laid (%)	98.9	98.8	99.3	98.4	98.7	
Viable embryos/eggs set (%)	87.6	89.8	77.0	79.3	84.4	
Live embryos/eggs set (%)	86.7	88.7	76.0	78.9	81.5	
No. of hatchlings/eggs set (%)	75.4	68.0	58.7	66.3	65.8	
Hatchling survival/eggs set (%)	75.0	67.0	58.3	65.6	65.1	
Live embryos/viable embryos (%)	99.0	98.9	98.8	99.5	96.6] 159 mg ai/kg
No. of hatchlings/live embryos (%)	86.8	77.3	78.6	84.1	81.8	>159 mg ai/kg
Hatchling survival/no. of hatchlings (%)	99.5	98.5	99.4	99.0	99.0	
Eggshell thickness (mm)	0.380	0.382	0.384	0.369	0.363	
Hatchling weight (g)	35.3	34.7	36.4	35.2	33.7	
Survivor weight (g)	294	288	293	297	290	7
Mean food consumption (g/bird/day)	163	179	167	166	171	
Male weight gain (g)	76.6	39.3	43.2	21.9*	14.2*	100 mg ai/kg 159 mg ai/kg
Female weight gain (g)	113	97.4	20.8*	26.7*	-33.9*	9.82 mg ai/kg 32.9 mg ai/kg

PMRA Submission Number {.....}

EPA MRID Number 50308302

*Statistically-significant from the negative control (p<0.05; William's Test)

E. STUDY DEFICIENCIES:

No deficiencies noted.

F. REVIEWER'S COMMENTS:

The study author's and reviewer's results were in general agreement for most endpoints when considering the differences between nominal values (used by the study author) and mean-measured values (used by the reviewer). However, the study author evaluated many reproduction endpoints based on the maximum eggs set or maximum eggs laid. This produced more conservative values than the reviewer's reproduction results for hatchling and survivor endpoints, based on eggs set or eggs laid. The study author determined a significant effect for adult male weight gain at only the highest test level, due to a reduction in weight at week 2, 4, and 6, while the reviewer's analysis of body weight gain detected significant dose-dependent reductions in adult males (at levels ≥ 100 mg ai/kg) and females (at levels ≥ 32.9 mg ai/kg). The reviewer notes that at the two lowest test concentrations, 9.82 mg ai/kg and 32.9 mg ai/kg, the mean adult male body weight gain was 39.31 g (48.7 % effect) and 43.3 g (43.6% effect), respectively, about half of what it was in the control (76.7 g), but it was not identified as significant by CETIS; high variability in male body weight in the two lowest test concentrations is noted as being a driver for the non-significant results. The study author did not analyze eggs laid/pen, which was the most sensitive reproductive endpoint in this experiment. The reviewer's results are reported in the Executive Summary and Conclusions sections of this DER.

Homogeneity, stability, and concentration verification samples were analyzed for diuron concentrations during the definitive study, and detailed results were included in the study report. For the homogeneity samples, the coefficients of variation were 3.75, 5.40, 1.55, and 2.91% for the nominal 10, 33, 100, and 160 mg ai/kg feed at Week 1 Day 0. Stability was determined from feed samples collected from all levels during Week 1 following ambient storage for 7 days. Mean recoveries ranged from 89 to 94% of Day-0 values. Test concentrations were verified during Weeks 2, 3, 4, 8, 12, 16, and 20; recoveries averaged 98, 101, 100, and 101% of nominal for the 10, 33, 100, and 160 mg ai/kg diets, respectively. The analytical recovery from the control samples confirmed absence of the test substance in the control diet. The reviewer calculated mean-measured concentrations using results from homogeneity, verification, and stability assessments.

Along with sample analyses, matrix blanks were prepared and analyzed to determine possible interferences, and matrix fortifications were prepared at 5.00 and 200 mg ai/kg diet to determine procedural recoveries. No interferences were observed at or above the lowest standard, and the method yielded mean procedural recoveries of 98 to 104%.

The following conditions were met in accepting the validity of this study:

- The mortality in the control group did not exceed 10 percent at the end of the test.
- The average number of 14-day old survivors per hen in the control group was greater than 14.
- The average egg shell thickness for the control group was greater than $0.340 \ \text{mm}$.

PMRA Submission Number {.....}

EPA MRID Number 50308302

G. CONCLUSIONS:

This study **is scientifically sound**] and is classified as **acceptable.** The reviewer's analysis detected a significant reduction in eggs laid per pen (based on 23% decrease in eggs laid per pen at 32.9 mg ai/kg, relative to control), and reduction in adult female body weight (82% reduction in weight at 32.9 mg ai/kg) relative to control. Eggs laid per pen and adult female body weight gain were equally most sensitive, with reductions noted at \geq 32.9 mg ai/kg diet (p<0.05; William's Test). No other treatment related effects were observed. The NOAEC was determined to be 9.82 mg ai/kg diet.

NOAEC: 9.82 mg ai/kg diet LOAEC: 32.9 mg ai/kg diet

Endpoint(s) affected: Eggs laid per pen, adult male and female body weight gain Most sensitive endpoint(s): Eggs laid per pen and adult female body weight gain

III. REFERENCES:

No references were cited other than standard guidelines or methodologies.

Report Date: 13 Apr-20 20:13 (p 1 of 8)

Whistling Wings, Inc.

Age: 27w

	Test Code/ID:	035505 50308302 / 10-1201-6135
OCSPP 850.2300 Chronic Avian Reproduction		Wildlife International

Batch ID:	03-8385-5999	Test Type:	Chronic Avian Repro	Analyst:
Start Date:	14 Apr-07	Protocol:	OCSPP 850.2300 Chronic Bird	Diluent:
Ending Date:	11 Oct-07	Species:	Anas Platyrhynchos	Brine:
Test Length:	180d 0h	Taxon:		Source:

Sample ID: Code: 035505 50308302 12-3647-0466 Project: Herbicide

Sample Date: 14 Apr-07 Material: Diuron Source: E.I. du Pont de Nemours and Company

Receipt Date: CAS (PC): Station:

CDM Smith Sample Age: n/a Client:

035505 50308302 mean measured concentrations, record created by: J. Burns

Multiple Comp	parison Summary							
Analysis ID	Endpoint	Comparison Method	✓ NOEL	LOEL	TOEL	TU	PM SD	s
02-1832-7942	01 Eggs Laid per Pen	Dunnett Multiple Comparison Test	32.9	100	57.36		23.9%	1
14-2302-8323	01 Eggs Laid per Pen	Williams Multiple Comparison Test	✓ 9.82	32.9	17.97		19.2%	1
05-0534-8647	02 Eggs Not Cracked per EL	Jonckheere-Terpstra Step-Down Test	159	>159	n/a		n/a	1
07-6872-2017	02 Eggs Not Cracked per EL	Wilcoxon/Bonferroni Adj Test	159	>159	n/a		2.02%	1
09-6007-4209	03 Viable Embryos per ES	Jonckheere-Terpstra Step-Down Test	159	>159	n/a		n/a	1
09-6310-0389	03 Viable Embryos per ES	Wilcoxon/Bonferroni Adj Test	159	>159	n/a		28.3%	1
20-1331-1920	04 Live Embryos per ES	Jonckheere-Terpstra Step-Down Test	159	>159	n/a		n/a	1
16-7874-5389	04 Live Embryos per ES	Wilcoxon/Bonferroni Adj Test	159	>159	n/a		28.2%	1
17-5198-5037	05 Hatchlings per ES	Jonckheere-Terpstra Step-Down Test	159	>159	n/a		n/a	1
13-5897-2566	05 Hatchlings per ES	Wilcoxon/Bonferroni Adj Test	159	>159	n/a		30.4%	1
14-3223-7439	06 14d Hatchlings per ES	Jonckheere-Terpstra Step-Down Test	159	>159	n/a		n/a	1
10-3925-2514	06 14d Hatchlings per ES	Wilcoxon/Bonferroni Adj Test	159	>159	n/a		30.4%	1
11-1249-5639	07 Live Embryos per VE	Jonckheere-Terpstra Step-Down Test	159	>159	n/a		n/a	1
10-5265-4501	07 Live Embryos per VE	Wilcoxon/Bonferroni Adj Test	159	>159	n/a		2.28%	1
00-9054-8551	08 Hatchlings per LE	Jonckheere-Terpstra Step-Down Test	159	>159	n/a		n/a	1
07-3290-3425	08 Hatchlings per LE	Wilcoxon/Bonferroni Adj Test	159	>159	n/a		16.6%	1
19-1824-8075	09 14d Hatchlings per NH	Jonckheere-Terpstra Step-Down Test	159	>159	n/a		n/a	1
04-1313-3205	09 14d Hatchlings per NH	Wilcoxon/Bonferroni Adj Test	159	>159	n/a		2.08%	1
00-5215-5733	10 Eggshell Thickness	Dunnett Multiple Comparison Test	159	>159	n/a		5.71%	1
15-9853-1600	10 Eggshell Thickness	Williams Multiple Comparison Test	159	>159	n/a		4.56%	1
18-0312-0676	11 Hatchling Weight	Dunnett Multiple Comparison Test	159	>159	n/a		6.94%	1
05-7659-6113	11 Hatchling Weight	Williams Multiple Comparison Test	159	>159	n/a		5.52%	1
14-8337-3075	12 14d Survivor Weight	Dunnett Multiple Comparison Test	159	>159	n/a		7.47%	1
02-5684-2714	12 14d Survivor Weight	Williams Multiple Comparison Test	159	>159	n/a		5.94%	1
06-9807-0361	13 Mean Food Consumption (Dunnett Multiple Comparison Test	159	>159	n/a		15.4%	1
13-8240-1353	13 Mean Food Consumption (Williams Multiple Comparison Test	159	>159	n/a		12.5%	1
11-9817-3040	14 Weight Gain MALE adult	Dunnett Multiple Comparison Test	159	>159	n/a		91.3%	1
10-6257-3751	14 Weight Gain MALE adult	Williams Multiple Comparison Test	32.9	100	57.36		73.4%	1
15-1952-8278	15 Weight Gain FEMALE adu	Dunnett Multiple Comparison Test	100	159	126.1		83.4%	1
00-4065-3141	15 Weight Gain FEMALE adu	Williams Multiple Comparison Test	✓ 9.82	32.9	17.97		67.0%	1

Report Date: Test Code/ID: 13 Apr-20 20:13 (p 2 of 8) 035505 50308302 / 10-1201-6135

OCSPP 850.2300	Chronic Av	ian Reprodu	uction							Wildlife In	ternational
01 Eggs Laid per	Pen Summ	ary									
Conc-mg ai/kg	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	N	16	47.69	40.22	55.15	23	71	3.503	14.01	29.38%	0.00%
9.82		16	41.38	34.08	48.67	19	67	3.422	13.69	33.08%	13.24%
32.9		15	36.6	26.68	46.52	1	60	4.626	17.92	48.95%	23.25%
100		16	31.44	25.51	37.36	13	51	2.781	11.12	35.38%	34.08%
159		14	18.07	10.42	25.73	0	44	3.543	13.26	73.36%	62.10%
02 Eggs Not Crac	ked per EL	Summary									
Conc-mg ai/kg	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	N	16	0.9894	0.9800	0.9988	0.9500	1.0000	0.0044	0.0176	1.78%	0.00%
9.82		16	0.9878	0.9774	0.9981	0.9318	1.0000	0.0049	0.0195	1.97%	0.17%
32.9		15	0.9934	0.9860	1.0000	0.9524	1.0000	0.0035	0.0134	1.35%	-0.40%
100		16	0.9835	0.9683	0.9987	0.9000	1.0000	0.0071	0.0285	2.89%	0.60%
159		12	0.9873	0.9668	1.0000	0.8947	1.0000	0.0093	0.0322	3.26%	0.22%
03 Viable Embryo	s per ES S	ummary									
Conc-mg ai/kg	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	N	16	0.8761	0.7908	0.9614	0.4333	1.0000	0.0400	0.1601	18.28%	0.00%
9.82		16	0.8975	0.8097	0.9854	0.4898	1.0000	0.0412	0.1649	18.37%	-2.45%
32.9		15	0.7704	0.5570	0.9838	0.0000	1.0000	0.0995	0.3854	50.02%	12.07%
100		16	0.7929	0.6103	0.9755	0.0000	1.0000	0.0857	0.3427	43.22%	9.50%
159		12	0.8444	0.6556	1.0000	0.0000	1.0000	0.0858	0.2973	35.20%	3.61%
04 Live Embryos	per ES Sun	nmary									
Conc-mg ai/kg	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	N	16	0.8673	0.7817	0.9529	0.4333	1.0000	0.0402	0.1607	18.53%	0.00%
9.82		16	0.8865	0.8006	0.9723	0.4898	1.0000	0.0403	0.1612	18.18%	-2.21%
32.9		15	0.7602	0.5494	0.9709	0.0000	1.0000	0.0983	0.3805	50.06%	12.35%
100		16	0.7889	0.6068	0.9710	0.0000	1.0000	0.0854	0.3417	43.31%	9.04%
159		12	0.8150	0.6315	0.9984	0.0000	1.0000	0.0833	0.2887	35.42%	6.03%
05 Hatchlings per	ES Summa	ary									
Conc-mg ai/kg	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	N	16	0.7542	0.6693	0.8391	0.4000	0.9211	0.0398	0.1593	21.13%	0.00%
9.82		16	0.6802	0.5595	0.8009	0.2174	0.9714	0.0566	0.2265	33.31%	9.81%
32.9		15	0.5872	0.4143	0.7601	0.0000	1.0000	0.0806	0.3122	53.16%	22.13%
100		16	0.6625	0.4932	0.8318	0.0000	1.0000	0.0794	0.3177	47.95%	12.15%
159		12	0.6583	0.4876	0.8291	0.0000	0.9565	0.0776	0.2687	40.82%	12.70%
06 14d Hatchlings	per ES Su	mmary									
Conc-mg ai/kg	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	N	16	0.7500	0.6660	0.8341	0.4000	0.9211	0.0394	0.1577	21.03%	0.00%
9.82		16	0.6704	0.5497	0.7911	0.2174	0.9714	0.0566	0.2266	33.79%	10.62%
32.9		15	0.5829	0.4120	0.7538	0.0000	1.0000	0.0797	0.3086	52.94%	22.28%
100		16	0.6563	0.4880	0.8245	0.0000	1.0000	0.0789	0.3157	48.10%	12.50%
159		12	0.6514	0.4816	0.8212	0.0000	0.9565	0.0771	0.2672	41.02%	13.15%
07 Live Embryos	per VE Sun	nmary				_					
Conc-mg ai/kg	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	N	16	0.9898	0.9804	0.9992	0.9412	1.0000	0.0044	0.0177	1.79%	0.00%
9.82		16	0.9887	0.9744	1.0000	0.9130	1.0000	0.0067	0.0267	2.70%	0.11%
		13	0.9876	0.9757	0.9996	0.9333	1.0000	0.0055	0.0198	2.00%	0.22%
32.9			0.3070	0.5151	0.5550	0.5555	1.0000	0.0000	0.0100		
32.9 100 159		14	0.9949	0.9873	1.0000	0.9615	1.0000	0.0035	0.0131	1.31%	-0.51%

Report Date: Test Code/ID: 13 Apr-20 20:13 (p 3 of 8) 035505 50308302 / 10-1201-6135

OCSPP 850.2300	Chronic Av	ian Reprodu	uction							Wildlife Int	ernationa
08 Hatchlings per	LE Summa	ary									
Conc-mg ai/kg	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	N	16	0.8680	0.8250	0.9111	0.6552	1.0000	0.0202	0.0807	9.30%	0.00%
9.82		16	0.7726	0.6591	0.8861	0.2381	1.0000	0.0532	0.2130	27.57%	11.00%
32.9		13	0.7866	0.7069	0.8663	0.6316	1.0000	0.0366	0.1319	16.77%	9.38%
100		14	0.8406	0.7492	0.9320	0.4545	1.0000	0.0423	0.1583	18.83%	3.16%
159		11	0.8175	0.6899	0.9452	0.5000	1.0000	0.0573	0.1900	23.24%	5.82%
09 14d Hatchlings	per NH Su	mmary									
Conc-mg ai/kg	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	N	16	0.9950	0.9871	1.0000	0.9444	1.0000	0.0037	0.0148	1.49%	0.00%
9.82		16	0.9853	0.9701	1.0000	0.9130	1.0000	0.0071	0.0285	2.89%	0.98%
32.9		13	0.9940	0.9870	1.0000	0.9714	1.0000	0.0032	0.0115	1.16%	0.10%
100		14	0.9904	0.9778	1.0000	0.9259	1.0000	0.0058	0.0217	2.19%	0.47%
159		11	0.9899	0.9674	1.0000	0.8889	1.0000	0.0101	0.0335	3.38%	0.51%
10 Eggshell Thick	ness Sumr	nary									
Conc-mg ai/kg	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	N	16	0.3804	0.3669	0.394	0.34	0.448	0.006365	0.02546	6.69%	0.00%
9.82		16	0.3822	0.3671	0.3973	0.326	0.435	0.007071	0.02828	7.40%	-0.46%
32.9		14	0.3839	0.3724	0.3953	0.35	0.424	0.005317	0.0199	5.18%	-0.90%
100		16	0.3692	0.3566	0.3818	0.326	0.424	0.005896	0.02359	6.39%	2.96%
159		12	0.3634	0.3438	0.3831	0.312	0.413	0.008923	0.03091	8.51%	4.47%
11 Hatchling Weig	jht Summa	ry									
Conc-mg ai/kg	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	N	16	35.25	34.25	36.25	33	40	0.4699	1.88	5.33%	0.00%
9.82		16	34.69	33.57	35.8	31	38	0.5222	2.089	6.02%	1.60%
32.9		13	36.38	33.81	38.95	28	44	1.18	4.253	11.69%	-3.22%
100		14	35.21	33.63	36.8	30	40	0.7351	2.751	7.81%	0.10%
159		11	33.73	31.8	35.65	29	40	0.8644	2.867	8.50%	4.32%
12 14d Survivor V	Veight Sum	mary									
Conc-mg ai/kg	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	N	16	293.6	280.2	306.9	245	334	6.26	25.04	8.53%	0.00%
9.82		16	288.1	273.6	302.6	245	328	6.81	27.24	9.45%	1.85%
32.9		13	293.1	276.8	309.4	241	337	7.491	27.01	9.22%	0.17%
100		14	296.5	281.5	311.5	235	339	6.946	25.99	8.77%	-1.00%
159		11	290.2	277.7	302.7	257	319	5.597	18.56	6.40%	1.15%
13 Mean Food Co	nsumption	(Adult) Sun	nmary								
Conc-mg ai/kg	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	N	16	163.4	144.6	182.3	112	238	8.844	35.38	21.65%	0.00%
9.82		16	179.1	162.3	195.8	141	241	7.847	31.39	17.53%	-9.56%
32.9		16	166.9	148.7	185.1	109	244	8.543	34.17	20.47%	-2.14%
100		16	165.9	151.4	180.5	120	214	6.809	27.24	16.41%	-1.53%
159		16	171.1	153.2	189	112	254	8.399	33.6	19.64%	-4.67%
14 Weight Gain M	ALE adult	Summary									
Conc-mg ai/kg	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	N	16	76.56	45.26	107.9	-23	181	14.69	58.75	76.74%	0.00%
9.82		16	39.31	-19.61	98.23	-171	222	27.64	110.6	281.28%	48.65%
32.9		15	43.2	2.625	83.77	-69	149	18.92	73.27	169.60%	43.58%
		40	24.04	40.72	00.04	0.0	200	40.00	70.22	247 020/	71.35%
100		16	21.94	-18.73	62.61	-86	206	19.08	76.33	347.93%	11.5570

CETIS Summary Report

Report Date: Test Code/ID: 13 Apr-20 20:13 (p 4 of 8) 035505 50308302 / 10-1201-6135

OCSPP 850.2300 Chronic Avian Reproduction

Wildlife International

15 Weight Gain F	EM ALE adu	ult Summary	,								
Conc-mg ai/kg	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	N	16	112.6	52.38	172.9	-41	281	28.26	113.1	100.38%	0.00%
9.82		16	97.38	24.5	170.2	-157	398	34.19	136.8	140.45%	13.54%
32.9		15	20.8	-50.72	92.32	-245	240	33.35	129.2	620.94%	81.53%
100		16	26.69	-31.37	84.75	-143	298	27.24	109	408.28%	76.30%
159		14	-33.93	-83.23	15.37	-145	148	22.82	85.38	-251.66%	130.13%

Report Date:

13 Apr-20 20:13 (p 5 of 8) **Test Code/ID:** 035505 50308302 / 10-1201-6135

		ian Reprodu	action i							wildine in	ternation
01 Eggs Laid per	Pen Detail										
Conc-mg ai/kg	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
١	N	69	43	45	54	47	41	71	28	53	51
		60	60	43	23	26	49				
.82		54	38	63	50	67	25	35	24	19	38
		43	30	37	54	44	41				
32.9		57	49	1	53	12	20	21	25	35	45
		39	31	44		60	57				
100		51	35	50	25	28	33	14	13	31	40
		36	35	23	42	23	24				
159		0	33	21	12	19	7	26		34	0
		14		20	44	3	20				
2 Eggs Not Crac	ked per EL	Detail									
Conc-mg ai/kg	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
)	N	1.0000	1.0000	1.0000	1.0000	0.9574	0.9756	1.0000	0.9643	1.0000	1.0000
		0.9833	0.9500	1.0000	1.0000	1.0000	1.0000				
0.82		1.0000	0.9737	1.0000	1.0000	0.9851	1.0000	0.9714	1.0000	1.0000	1.0000
		1.0000	0.9667	1.0000	1.0000	0.9318	0.9756				
32.9		0.9825	1.0000	1.0000	1.0000	1.0000	1.0000	0.9524	1.0000	1.0000	1.0000
		1.0000	1.0000	1.0000		0.9833	0.9825				
100		0.9804	1.0000	0.9800	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9000
		1.0000	0.9429	1.0000	0.9762	0.9565	1.0000				
159			1.0000	0.9524	1.0000	0.8947	1.0000	1.0000		1.0000	
		1.0000		1.0000	1.0000	1.0000	1.0000				
03 Viable Embry	ns ner FS D	etail									
Conc-mg ai/kg	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
)	N	0.4333	0.9487	0.9762	0.9375	0.9211	1.0000	0.8615	1.0000	0.7234	1.0000
		1.0000	0.9400	0.9250	0.7500	0.9565	0.6444				
9.82							1.0000	0.7742	1.0000	0.9375	1.0000
9.82		0.9600	0.9032	0.8070	0.9778	1.0000	1.0000 1.0000	0.7742	1.0000	0.9375	1.0000
		0.9600 1.0000	0.9032 1.0000	0.8070 0.9706	0.9778 0.4898	1.0000 0.5405	1.0000				
		0.9600 1.0000 0.9808	0.9032 1.0000 0.9111	0.8070 0.9706 1.0000	0.9778	1.0000 0.5405 0.0909	1.0000 0.8824	0.7742	1.0000 0.9474	0.9375 0.9677	
32.9		0.9600 1.0000 0.9808 0.0000	0.9032 1.0000 0.9111 1.0000	0.8070 0.9706 1.0000 0.9500	0.9778 0.4898 0.9583	1.0000 0.5405 0.0909 0.8864	1.0000 0.8824 0.9808	0.0000	0.9474	0.9677	1.0000
32.9		0.9600 1.0000 0.9808 0.0000 0.9773	0.9032 1.0000 0.9111 1.0000 0.9355	0.8070 0.9706 1.0000 0.9500 0.7727	0.9778 0.4898 0.9583 1.0000	1.0000 0.5405 0.0909 0.8864 0.8750	1.0000 0.8824 0.9808 0.0000				
32.9		0.9600 1.0000 0.9808 0.0000	0.9032 1.0000 0.9111 1.0000 0.9355 1.0000	0.8070 0.9706 1.0000 0.9500 0.7727 1.0000	0.9778 0.4898 0.9583 1.0000 0.8333	1.0000 0.5405 0.0909 0.8864 0.8750 0.9474	1.0000 0.8824 0.9808 0.0000 1.0000	0.0000 0.4167	0.9474	0.9677 0.9286	1.0000
32.9		0.9600 1.0000 0.9808 0.0000 0.9773 0.0000	0.9032 1.0000 0.9111 1.0000 0.9355	0.8070 0.9706 1.0000 0.9500 0.7727 1.0000 0.8667	0.9778 0.4898 0.9583 1.0000 0.8333 0.9000	1.0000 0.5405 0.0909 0.8864 0.8750 0.9474 1.0000	1.0000 0.8824 0.9808 0.0000 1.0000 0.0000	0.0000	0.9474	0.9677	1.0000
32.9 100 159	per ES Det	0.9600 1.0000 0.9808 0.0000 0.9773 0.0000	0.9032 1.0000 0.9111 1.0000 0.9355 1.0000	0.8070 0.9706 1.0000 0.9500 0.7727 1.0000	0.9778 0.4898 0.9583 1.0000 0.8333	1.0000 0.5405 0.0909 0.8864 0.8750 0.9474	1.0000 0.8824 0.9808 0.0000 1.0000	0.0000 0.4167	0.9474	0.9677 0.9286	1.0000
32.9 100 159 04 Live Embryos	per ES Det: Code	0.9600 1.0000 0.9808 0.0000 0.9773 0.0000 1.0000	0.9032 1.0000 0.9111 1.0000 0.9355 1.0000 0.9667	0.8070 0.9706 1.0000 0.9500 0.7727 1.0000 0.8667 0.9375	0.9778 0.4898 0.9583 1.0000 0.8333 0.9000 0.5250	1.0000 0.5405 0.0909 0.8864 0.8750 0.9474 1.0000 1.0000	1.0000 0.8824 0.9808 0.0000 1.0000 0.0000 0.9375	0.0000 0.4167 1.0000	0.9474 1.0000	0.9677 0.9286 1.0000	1.0000
32.9 100 159 04 Live Embryos Conc-mg ai/kg	Code	0.9600 1.0000 0.9808 0.0000 0.9773 0.0000 1.0000	0.9032 1.0000 0.9111 1.0000 0.9355 1.0000 0.9667	0.8070 0.9706 1.0000 0.9500 0.7727 1.0000 0.8667 0.9375	0.9778 0.4898 0.9583 1.0000 0.8333 0.9000 0.5250	1.0000 0.5405 0.0909 0.8864 0.8750 0.9474 1.0000 1.0000	1.0000 0.8824 0.9808 0.0000 1.0000 0.0000 0.9375	0.0000 0.4167 1.0000 Rep 7	0.9474 1.0000 Rep 8	0.9677 0.9286 1.0000 Rep 9	1.0000 1.0000 Rep 10
32.9 100 159 04 Live Embryos Conc-mg ai/kg	•	0.9600 1.0000 0.9808 0.0000 0.9773 0.0000 1.0000 ail Rep 1 0.4333	0.9032 1.0000 0.9111 1.0000 0.9355 1.0000 0.9667 Rep 2	0.8070 0.9706 1.0000 0.9500 0.7727 1.0000 0.8667 0.9375 Rep 3	0.9778 0.4898 0.9583 1.0000 0.8333 0.9000 0.5250 Rep 4 0.9375	1.0000 0.5405 0.0909 0.8864 0.8750 0.9474 1.0000 1.0000 Rep 5	1.0000 0.8824 0.9808 0.0000 1.0000 0.0000 0.9375 Rep 6	0.0000 0.4167 1.0000	0.9474 1.0000	0.9677 0.9286 1.0000	1.0000 1.0000 Rep 10
32.9 100 159 24 Live Embryos Conc-mg ai/kg	Code	0.9600 1.0000 0.9808 0.0000 0.9773 0.0000 1.0000 ail Rep 1 0.4333 0.9811	0.9032 1.0000 0.9111 1.0000 0.9355 1.0000 0.9667 Rep 2 0.9487 0.9200	0.8070 0.9706 1.0000 0.9500 0.7727 1.0000 0.8667 0.9375 Rep 3 0.9762 0.9250	0.9778 0.4898 0.9583 1.0000 0.8333 0.9000 0.5250 Rep 4 0.9375 0.7500	1.0000 0.5405 0.0909 0.8864 0.8750 0.9474 1.0000 1.0000 Rep 5 0.9211 0.9565	1.0000 0.8824 0.9808 0.0000 1.0000 0.0000 0.9375 Rep 6 0.9714 0.6444	0.0000 0.4167 1.0000 Rep 7 0.8308	0.9474 1.0000 Rep 8 1.0000	0.9677 0.9286 1.0000 Rep 9 0.6809	1.0000 1.0000 Rep 10
32.9 100 159 24 Live Embryos Conc-mg ai/kg	Code	0.9600 1.0000 0.9808 0.0000 0.9773 0.0000 1.0000 ail Rep 1 0.4333 0.9811 0.9600	0.9032 1.0000 0.9111 1.0000 0.9355 1.0000 0.9667 Rep 2 0.9487 0.9200 0.9032	0.8070 0.9706 1.0000 0.9500 0.7727 1.0000 0.8667 0.9375 Rep 3 0.9762 0.9250 0.8070	0.9778 0.4898 0.9583 1.0000 0.8333 0.9000 0.5250 Rep 4 0.9375 0.7500 0.9778	1.0000 0.5405 0.0909 0.8864 0.8750 0.9474 1.0000 1.0000 Rep 5 0.9211 0.9565 1.0000	1.0000 0.8824 0.9808 0.0000 1.0000 0.0000 0.9375 Rep 6 0.9714 0.6444 0.9130	0.0000 0.4167 1.0000 Rep 7	0.9474 1.0000 Rep 8	0.9677 0.9286 1.0000 Rep 9	1.0000 1.0000 Rep 10
32.9 100 159 14 Live Embryos Conc-mg ai/kg	Code	0.9600 1.0000 0.9808 0.0000 0.9773 0.0000 1.0000 ail Rep 1 0.4333 0.9811 0.9600 1.0000	0.9032 1.0000 0.9111 1.0000 0.9355 1.0000 0.9667 Rep 2 0.9487 0.9200 0.9032 1.0000	0.8070 0.9706 1.0000 0.9500 0.7727 1.0000 0.8667 0.9375 Rep 3 0.9762 0.9250 0.8070 0.9706	0.9778 0.4898 0.9583 1.0000 0.8333 0.9000 0.5250 Rep 4 0.9375 0.7500 0.9778 0.4898	1.0000 0.5405 0.0909 0.8864 0.8750 0.9474 1.0000 1.0000 Rep 5 0.9211 0.9565 1.0000 0.5405	1.0000 0.8824 0.9808 0.0000 1.0000 0.0000 0.9375 Rep 6 0.9714 0.6444 0.9130 0.9722	0.0000 0.4167 1.0000 Rep 7 0.8308 0.7742	0.9474 1.0000 Rep 8 1.0000	0.9677 0.9286 1.0000 Rep 9 0.6809 0.8750	1.0000 1.0000 Rep 10 1.0000
32.9 100 159 14 Live Embryos Conc-mg ai/kg	Code	0.9600 1.0000 0.9808 0.0000 0.9773 0.0000 1.0000 ail Rep 1 0.4333 0.9811 0.9600 1.0000 0.9615	0.9032 1.0000 0.9111 1.0000 0.9355 1.0000 0.9667 Rep 2 0.9487 0.9200 0.9032 1.0000 0.8889	0.8070 0.9706 1.0000 0.9500 0.7727 1.0000 0.8667 0.9375 Rep 3 0.9762 0.9250 0.8070 0.9706 1.0000	0.9778 0.4898 0.9583 1.0000 0.8333 0.9000 0.5250 Rep 4 0.9375 0.7500 0.9778	1.0000 0.5405 0.0909 0.8864 0.8750 0.9474 1.0000 1.0000 Rep 5 0.9211 0.9565 1.0000 0.5405 0.0909	1.0000 0.8824 0.9808 0.0000 1.0000 0.0000 0.9375 Rep 6 0.9714 0.6444 0.9130 0.9722 0.8824	0.0000 0.4167 1.0000 Rep 7 0.8308	0.9474 1.0000 Rep 8 1.0000	0.9677 0.9286 1.0000 Rep 9 0.6809	1.0000 1.0000 Rep 10 1.0000
32.9 100 159 14 Live Embryos Conc-mg ai/kg	Code	0.9600 1.0000 0.9808 0.0000 0.9773 0.0000 1.0000 ail Rep 1 0.4333 0.9811 0.9600 1.0000 0.9615 0.0000	0.9032 1.0000 0.9111 1.0000 0.9355 1.0000 0.9667 Rep 2 0.9487 0.9200 0.9032 1.0000 0.8889 1.0000	0.8070 0.9706 1.0000 0.9500 0.7727 1.0000 0.8667 0.9375 Rep 3 0.9762 0.9250 0.8070 0.9706 1.0000 0.9500	0.9778 0.4898 0.9583 1.0000 0.8333 0.9000 0.5250 Rep 4 0.9375 0.7500 0.9778 0.4898 0.9583	1.0000 0.5405 0.0909 0.8864 0.8750 0.9474 1.0000 1.0000 Rep 5 0.9211 0.9565 1.0000 0.5405 0.0909 0.8636	1.0000 0.8824 0.9808 0.0000 1.0000 0.0000 0.9375 Rep 6 0.9714 0.6444 0.9130 0.9722 0.8824 0.9808	0.0000 0.4167 1.0000 Rep 7 0.8308 0.7742 0.0000	0.9474 1.0000 Rep 8 1.0000 1.0000 0.9474	0.9677 0.9286 1.0000 Rep 9 0.6809 0.8750 0.9032	1.0000 1.0000 Rep 10 1.0000 1.0000 0.9756
32.9 100 159 24 Live Embryos Conc-mg ai/kg 0 9.82	Code	0.9600 1.0000 0.9808 0.0000 0.9773 0.0000 1.0000 ail Rep 1 0.4333 0.9811 0.9600 1.0000 0.9615 0.0000 0.9773	0.9032 1.0000 0.9111 1.0000 0.9355 1.0000 0.9667 Rep 2 0.9487 0.9200 0.9032 1.0000 0.8889 1.0000 0.9355	0.8070 0.9706 1.0000 0.9500 0.7727 1.0000 0.8667 0.9375 Rep 3 0.9762 0.9250 0.8070 0.9706 1.0000 0.9500 0.7727	0.9778 0.4898 0.9583 1.0000 0.8333 0.9000 0.5250 Rep 4 0.9375 0.7500 0.9778 0.4898 0.9583 1.0000	1.0000 0.5405 0.0909 0.8864 0.8750 0.9474 1.0000 1.0000 Rep 5 0.9211 0.9565 1.0000 0.5405 0.0909 0.8636 0.8750	1.0000 0.8824 0.9808 0.0000 1.0000 0.0000 0.9375 Rep 6 0.9714 0.6444 0.9130 0.9722 0.8824 0.9808 0.0000	0.0000 0.4167 1.0000 Rep 7 0.8308 0.7742	0.9474 1.0000 Rep 8 1.0000	0.9677 0.9286 1.0000 Rep 9 0.6809 0.8750	1.0000 1.0000 Rep 10 1.0000 1.0000 0.9756
32.9 100 159 24 Live Embryos Conc-mg ai/kg 0 9.82 32.9	Code	0.9600 1.0000 0.9808 0.0000 0.9773 0.0000 1.0000 ail Rep 1 0.4333 0.9811 0.9600 1.0000 0.9615 0.0000	0.9032 1.0000 0.9111 1.0000 0.9355 1.0000 0.9667 Rep 2 0.9487 0.9200 0.9032 1.0000 0.8889 1.0000 0.9355 1.0000	0.8070 0.9706 1.0000 0.9500 0.7727 1.0000 0.8667 0.9375 Rep 3 0.9762 0.9250 0.8070 0.9706 1.0000 0.9500 0.7727 1.0000	0.9778 0.4898 0.9583 1.0000 0.8333 0.9000 0.5250 Rep 4 0.9375 0.7500 0.9778 0.4898 0.9583 1.0000 0.8056	1.0000 0.5405 0.0909 0.8864 0.8750 0.9474 1.0000 1.0000 Rep 5 0.9211 0.9565 1.0000 0.5405 0.0909 0.8636 0.8750 0.9474	1.0000 0.8824 0.9808 0.0000 1.0000 0.0000 0.9375 Rep 6 0.9714 0.6444 0.9130 0.9722 0.8824 0.9808 0.0000 1.0000	0.0000 0.4167 1.0000 Rep 7 0.8308 0.7742 0.0000 0.4167	0.9474 1.0000 Rep 8 1.0000 1.0000 0.9474	0.9677 0.9286 1.0000 Rep 9 0.6809 0.8750 0.9032 0.8929	1.0000 1.0000 Rep 10 1.0000 1.0000 0.9756
9.82 32.9 100 159 04 Live Embryos Conc-mg ai/kg 0 9.82 32.9 100	Code	0.9600 1.0000 0.9808 0.0000 0.9773 0.0000 1.0000 ail Rep 1 0.4333 0.9811 0.9600 1.0000 0.9615 0.0000 0.9773	0.9032 1.0000 0.9111 1.0000 0.9355 1.0000 0.9667 Rep 2 0.9487 0.9200 0.9032 1.0000 0.8889 1.0000 0.9355	0.8070 0.9706 1.0000 0.9500 0.7727 1.0000 0.8667 0.9375 Rep 3 0.9762 0.9250 0.8070 0.9706 1.0000 0.9500 0.7727	0.9778 0.4898 0.9583 1.0000 0.8333 0.9000 0.5250 Rep 4 0.9375 0.7500 0.9778 0.4898 0.9583 1.0000	1.0000 0.5405 0.0909 0.8864 0.8750 0.9474 1.0000 1.0000 Rep 5 0.9211 0.9565 1.0000 0.5405 0.0909 0.8636 0.8750	1.0000 0.8824 0.9808 0.0000 1.0000 0.0000 0.9375 Rep 6 0.9714 0.6444 0.9130 0.9722 0.8824 0.9808 0.0000	0.0000 0.4167 1.0000 Rep 7 0.8308 0.7742 0.0000	0.9474 1.0000 Rep 8 1.0000 1.0000 0.9474	0.9677 0.9286 1.0000 Rep 9 0.6809 0.8750 0.9032	1.0000

Report Date:

13 Apr-20 20:13 (p 6 of 8) **Test Code/ID:** 035505 50308302 / 10-1201-6135

		ian Reprodu								Wilding III	ternation
05 Hatchlings per	ES Detail										
Conc-mg ai/kg	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
)	N	0.4000	0.8462	0.8095	0.8542	0.9211	0.8857	0.8154	0.8182	0.5745	0.8889
		0.7547	0.8000	0.8000	0.6500	0.8261	0.4222				
9.82		0.9200	0.7419	0.6491	0.4667	0.9344	0.2174	0.6129	0.8095	0.5000	0.9714
		0.9487	0.6364	0.9412	0.4898	0.4324	0.6111				
32.9		0.6731	0.6444	1.0000	0.9167	0.0909	0.6471	0.0000	0.6842	0.6452	0.9024
		0.0000	0.7143	0.6000		0.6364	0.6538				
100		0.9545	0.7097	0.6136	1.0000	0.8333	0.0000	0.3333	0.4545	0.8214	0.8710
		0.0000	0.9630	0.5789	0.7778	0.7895	0.9000				
159			0.7667	0.8000	0.5000	0.9286	0.0000	0.9565		0.5484	
		0.7500		0.9375	0.5250	0.5000	0.6875				
06 14d Hatchlings	s per ES De	tail									
Conc-mg ai/kg	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
)	N	0.4000	0.8462	0.8095	0.8333	0.9211	0.8857	0.8154	0.7727	0.5745	0.8889
		0.7547	0.8000	0.8000	0.6500	0.8261	0.4222				
9.82		0.9200	0.6774	0.6316	0.4667	0.9344	0.2174	0.6129	0.7619	0.5000	0.9714
		0.9487	0.6364	0.9412	0.4898	0.4054	0.6111				
32.9		0.6538	0.6444	1.0000	0.8958	0.0909	0.6471	0.0000	0.6842	0.6452	0.8780
		0.0000	0.7143	0.6000		0.6364	0.6538				
100		0.9318	0.7097	0.5682	1.0000	0.8333	0.0000	0.3333	0.4545	0.8214	0.8387
		0.0000	0.9630	0.5789	0.7778	0.7895	0.9000				
							0.0000	0.0505		0.5484	
159			0.7667	0.8000	0.5000	0.9286	0.0000	0.9565		0.5404	
159		0.6667	0.7667	0.8000 0.9375	0.5000 0.5250	0.9286 0.5000	0.6875	0.9565		0.5404	
159 O7 Live Embryos	per VE Det		0.7667					0.9565		0.5404	
07 Live Embryos	per VE Det Code		0.7667 Rep 2					0.9565 Rep 7	Rep 8	Rep 9	Rep 10
07 Live Embryos Conc-mg ai/kg	•	ail		0.9375	0.5250	0.5000	0.6875		Rep 8		Rep 10
07 Live Embryos Conc-mg ai/kg	Code	ail Rep 1	Rep 2	0.9375 Rep 3	0.5250 Rep 4	0.5000 Rep 5	0.6875 Rep 6	Rep 7		Rep 9	
07 Live Embryos Conc-mg ai/kg	Code	Rep 1	Rep 2	0.9375 Rep 3 1.0000	0.5250 Rep 4 1.0000	0.5000 Rep 5	0.6875 Rep 6 0.9714	Rep 7		Rep 9	1.0000
07 Live Embryos Conc-mg ai/kg	Code	Rep 1 1.0000 0.9811	Rep 2 1.0000 0.9787	0.9375 Rep 3 1.0000 1.0000	0.5250 Rep 4 1.0000 1.0000	0.5000 Rep 5 1.0000 1.0000	0.6875 Rep 6 0.9714 1.0000	Rep 7	1.0000	Rep 9 0.9412	1.0000
D7 Live Embryos Conc-mg ai/kg D	Code	Rep 1 1.0000 0.9811 1.0000	Rep 2 1.0000 0.9787 1.0000	0.9375 Rep 3 1.0000 1.0000 1.0000	0.5250 Rep 4 1.0000 1.0000 1.0000	0.5000 Rep 5 1.0000 1.0000 1.0000	0.6875 Rep 6 0.9714 1.0000 0.9130	Rep 7	1.0000	Rep 9 0.9412 0.9333	1.0000
07 Live Embryos Conc-mg ai/kg 0 9.82	Code	Rep 1 1.0000 0.9811 1.0000 1.0000	Rep 2 1.0000 0.9787 1.0000 1.0000	0.9375 Rep 3 1.0000 1.0000 1.0000 1.0000	Rep 4 1.0000 1.0000 1.0000	0.5000 Rep 5 1.0000 1.0000 1.0000 1.0000	0.6875 Rep 6 0.9714 1.0000 0.9130 0.9722 1.0000	Rep 7	1.0000	Rep 9 0.9412	1.0000
D7 Live Embryos Conc-mg ai/kg D 9.82 32.9	Code	Rep 1 1.0000 0.9811 1.0000 1.0000	Rep 2 1.0000 0.9787 1.0000 1.0000 0.9756	0.9375 Rep 3 1.0000 1.0000 1.0000 1.0000 1.0000	Rep 4 1.0000 1.0000 1.0000	0.5000 Rep 5 1.0000 1.0000 1.0000 1.0000 1.0000	0.6875 Rep 6 0.9714 1.0000 0.9130 0.9722	Rep 7	1.0000	Rep 9 0.9412 0.9333	
07 Live Embryos Conc-mg ai/kg 0 9.82 32.9	Code	Rep 1 1.0000 0.9811 1.0000 1.0000 0.9804	Rep 2 1.0000 0.9787 1.0000 1.0000 0.9756 1.0000	0.9375 Rep 3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	0.5250 Rep 4 1.0000 1.0000 1.0000 1.0000 1.0000	0.5000 Rep 5 1.0000 1.0000 1.0000 1.0000 1.0000 0.9744	0.6875 Rep 6 0.9714 1.0000 0.9130 0.9722 1.0000	Rep 7 0.9643 1.0000	1.0000 1.0000 1.0000	Rep 9 0.9412 0.9333 0.9333	1.0000 1.0000 0.9756
07 Live Embryos Conc-mg ai/kg 0 9.82 32.9	Code	Rep 1 1.0000 0.9811 1.0000 1.0000 0.9804	Rep 2 1.0000 0.9787 1.0000 1.0000 0.9756 1.0000 1.0000 1.0000	0.9375 Rep 3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	0.5250 Rep 4 1.0000 1.0000 1.0000 1.0000 1.0000 0.9667	0.5000 Rep 5 1.0000 1.0000 1.0000 1.0000 0.9744 1.0000 1.0000	0.6875 Rep 6 0.9714 1.0000 0.9130 0.9722 1.0000 1.0000	Rep 7 0.9643 1.0000	1.0000 1.0000 1.0000	Rep 9 0.9412 0.9333 0.9333	1.0000 1.0000 0.9756
D7 Live Embryos Conc-mg ai/kg D 9.82 32.9	Code	Rep 1 1.0000 0.9811 1.0000 1.0000 0.9804	Rep 2 1.0000 0.9787 1.0000 1.0000 0.9756 1.0000 1.0000	0.9375 Rep 3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	0.5250 Rep 4 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	0.5000 Rep 5 1.0000 1.0000 1.0000 1.0000 0.9744 1.0000	0.6875 Rep 6 0.9714 1.0000 0.9130 0.9722 1.0000 1.0000	Rep 7 0.9643 1.0000	1.0000 1.0000 1.0000	Rep 9 0.9412 0.9333 0.9333 0.9615	1.0000 0.9756
	Code N	Rep 1 1.0000 0.9811 1.0000 1.0000 0.9804	Rep 2 1.0000 0.9787 1.0000 1.0000 0.9756 1.0000 1.0000 1.0000	Rep 3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9231	0.5250 Rep 4 1.0000 1.0000 1.0000 1.0000 1.0000 0.9667 0.8889	0.5000 Rep 5 1.0000 1.0000 1.0000 1.0000 0.9744 1.0000 1.0000 0.9286	0.6875 Rep 6 0.9714 1.0000 0.9130 0.9722 1.0000 1.0000	Rep 7 0.9643 1.0000	1.0000 1.0000 1.0000	Rep 9 0.9412 0.9333 0.9333 0.9615	1.0000 1.0000 0.9756
07 Live Embryos Conc-mg ai/kg 0 9.82 32.9 100 159	Code N	Rep 1 1.0000 0.9811 1.0000 1.0000 0.9804	Rep 2 1.0000 0.9787 1.0000 1.0000 0.9756 1.0000 1.0000 1.0000	Rep 3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9231	0.5250 Rep 4 1.0000 1.0000 1.0000 1.0000 1.0000 0.9667 0.8889	0.5000 Rep 5 1.0000 1.0000 1.0000 1.0000 0.9744 1.0000 1.0000 0.9286	0.6875 Rep 6 0.9714 1.0000 0.9130 0.9722 1.0000 1.0000	Rep 7 0.9643 1.0000	1.0000 1.0000 1.0000	Rep 9 0.9412 0.9333 0.9333 0.9615	1.0000 1.0000 0.9756
07 Live Embryos Conc-mg ai/kg 0 9.82 32.9 100 159 08 Hatchlings per Conc-mg ai/kg	Code N	Rep 1 1.0000 0.9811 1.0000 1.0000 0.9804 1.0000 0.9167	Rep 2 1.0000 0.9787 1.0000 1.0000 0.9756 1.0000 1.0000 1.0000	0.9375 Rep 3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	0.5250 Rep 4 1.0000 1.0000 1.0000 1.0000 1.0000 0.9667 0.8889 1.0000	0.5000 Rep 5 1.0000 1.0000 1.0000 1.0000 0.9744 1.0000 1.0000 0.9286 1.0000	0.6875 Rep 6 0.9714 1.0000 0.9130 0.9722 1.0000 1.0000 1.0000	Rep 7 0.9643 1.0000 1.0000	1.0000 1.0000 1.0000 1.0000	Rep 9 0.9412 0.9333 0.9333 0.9615 0.9677	1.0000 1.0000 0.9756 1.0000
D7 Live Embryos Conc-mg ai/kg D 3.82 32.9 100 159 D8 Hatchlings per Conc-mg ai/kg	Code N LE Detail Code	Rep 1 1.0000 0.9811 1.0000 1.0000 0.9804 1.0000 0.9167	Rep 2 1.0000 0.9787 1.0000 1.0000 0.9756 1.0000 1.0000 1.0000	0.9375 Rep 3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9231 1.0000 Rep 3	0.5250 Rep 4 1.0000 1.0000 1.0000 1.0000 1.0000 0.9667 0.8889 1.0000 Rep 4	0.5000 Rep 5 1.0000 1.0000 1.0000 1.0000 0.9744 1.0000 1.0000 0.9286 1.0000 Rep 5	0.6875 Rep 6 0.9714 1.0000 0.9130 0.9722 1.0000 1.0000 1.0000 Rep 6	Rep 7 0.9643 1.0000 1.0000 Rep 7	1.0000 1.0000 1.0000 1.0000	Rep 9 0.9412 0.9333 0.9333 0.9615 0.9677	1.0000 1.0000 0.9756 1.0000
O7 Live Embryos Conc-mg ai/kg O 0.82 0.32.9 0.159 0.8 Hatchlings per Conc-mg ai/kg	Code N LE Detail Code	Rep 1 1.0000 0.9811 1.0000 1.0000 0.9804 1.0000 0.9167 Rep 1 0.9231	Rep 2 1.0000 0.9787 1.0000 1.0000 0.9756 1.0000 1.0000 1.0000 1.0000	Rep 3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9231 1.0000 Rep 3 0.8293	0.5250 Rep 4 1.0000 1.0000 1.0000 1.0000 1.0000 0.9667 0.8889 1.0000 Rep 4 0.9111	0.5000 Rep 5 1.0000 1.0000 1.0000 1.0000 0.9744 1.0000 1.0000 0.9286 1.0000 Rep 5 1.0000	0.6875 Rep 6 0.9714 1.0000 0.9130 0.9722 1.0000 1.0000 1.0000 Rep 6 0.9118	Rep 7 0.9643 1.0000 1.0000 Rep 7	1.0000 1.0000 1.0000 1.0000	Rep 9 0.9412 0.9333 0.9333 0.9615 0.9677	1.0000 1.0000 0.9756 1.0000
O7 Live Embryos Conc-mg ai/kg O 0.82 0.32.9 0.159 0.8 Hatchlings per Conc-mg ai/kg	Code N LE Detail Code	Rep 1 1.0000 0.9811 1.0000 1.0000 0.9804 1.0000 0.9167 Rep 1 0.9231 0.7692	Rep 2 1.0000 0.9787 1.0000 1.0000 0.9756 1.0000 1.0000 1.0000 1.0000 1.0000 Rep 2 0.8919 0.8696	Rep 3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9231 1.0000 Rep 3 0.8293 0.8649	0.5250 Rep 4 1.0000 1.0000 1.0000 1.0000 1.0000 0.9667 0.8889 1.0000 Rep 4 0.9111 0.8667	0.5000 Rep 5 1.0000 1.0000 1.0000 1.0000 0.9744 1.0000 1.0000 0.9286 1.0000 Rep 5 1.0000 0.8636	0.6875 Rep 6 0.9714 1.0000 0.9130 0.9722 1.0000 1.0000 1.0000 Rep 6 0.9118 0.6552	Rep 7 0.9643 1.0000 1.0000 1.0000 Rep 7 0.9815	1.0000 1.0000 1.0000 1.0000 Rep 8 0.8182	Rep 9 0.9412 0.9333 0.9333 0.9615 0.9677 Rep 9 0.8438	1.0000 1.0000 0.9756 1.0000 Rep 10 0.8889
D7 Live Embryos Conc-mg ai/kg D9.82 32.9 100 159 D8 Hatchlings per Conc-mg ai/kg D9.82	Code N LE Detail Code	Rep 1 1.0000 0.9811 1.0000 1.0000 0.9804 1.0000 0.9167 Rep 1 0.9231 0.7692 0.9583	Rep 2 1.0000 0.9787 1.0000 1.0000 0.9756 1.0000 1.0000 1.0000 1.0000 1.0000 0.8919 0.8696 0.8214	Rep 3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9231 1.0000 Rep 3 0.8293 0.8649 0.8043	0.5250 Rep 4 1.0000 1.0000 1.0000 1.0000 1.0000 0.9667 0.8889 1.0000 Rep 4 0.9111 0.8667 0.4773	0.5000 Rep 5 1.0000 1.0000 1.0000 1.0000 0.9744 1.0000 1.0000 0.9286 1.0000 Rep 5 1.0000 0.8636 0.9344	0.6875 Rep 6 0.9714 1.0000 0.9130 0.9722 1.0000 1.0000 1.0000 Rep 6 0.9118 0.6552 0.2381	Rep 7 0.9643 1.0000 1.0000 1.0000 Rep 7 0.9815	1.0000 1.0000 1.0000 1.0000 Rep 8 0.8182	Rep 9 0.9412 0.9333 0.9333 0.9615 0.9677 Rep 9 0.8438	1.0000 1.0000 0.9756 1.0000 Rep 10 0.8889 0.9714
D7 Live Embryos Conc-mg ai/kg D9.82 32.9 100 159 D8 Hatchlings per Conc-mg ai/kg D9.82	Code N LE Detail Code	Rep 1 1.0000 0.9811 1.0000 1.0000 0.9804 1.0000 0.9167 Rep 1 0.9231 0.7692 0.9583 0.9487	Rep 2 1.0000 0.9787 1.0000 1.0000 0.9756 1.0000 1.0000 1.0000 1.0000 1.0000 0.8214 0.6364 0.7250	Rep 3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 Rep 3 0.8293 0.8649 0.8043 0.9697 1.0000	Rep 4 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9667 0.8889 1.0000 Rep 4 0.9111 0.8667 0.4773 1.0000	Rep 5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9744 1.0000 1.0000 0.9286 1.0000 Rep 5 1.0000 0.8636 0.9344 0.8000 1.0000	Rep 6 0.9714 1.0000 0.9130 0.9722 1.0000 1.0000 1.0000 Rep 6 0.9118 0.6552 0.2381 0.6286	Rep 7 0.9643 1.0000 1.0000 1.0000 Rep 7 0.9815	1.0000 1.0000 1.0000 1.0000 1.0000 Rep 8 0.8182 0.8095	Rep 9 0.9412 0.9333 0.9333 0.9615 0.9677 Rep 9 0.8438 0.5714	1.0000 1.0000 0.9756 1.0000 Rep 10 0.8889 0.9714
D7 Live Embryos Conc-mg ai/kg D 9.82 32.9 100 159 D8 Hatchlings per Conc-mg ai/kg D 9.82	Code N LE Detail Code	Rep 1 1.0000 0.9811 1.0000 1.0000 0.9804 1.0000 0.9167 Rep 1 0.9231 0.7692 0.9583 0.9487 0.7000	Rep 2 1.0000 0.9787 1.0000 1.0000 0.9756 1.0000 1.0000 1.0000 1.0000 0.8696 0.8214 0.6364 0.7250 0.7143	Rep 3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9231 1.0000 Rep 3 0.8293 0.8649 0.8043 0.9697 1.0000 0.6316	0.5250 Rep 4 1.0000 1.0000 1.0000 1.0000 1.0000 0.9667 0.8889 1.0000 Rep 4 0.9111 0.8667 0.4773 1.0000 0.9565	Rep 5 1.0000 1.0000 1.0000 1.0000 1.0000 0.9744 1.0000 0.9286 1.0000 0.8636 0.9344 0.8000 1.0000 0.7368	Rep 6 0.9714 1.0000 0.9130 0.9722 1.0000 1.0000 1.0000 Rep 6 0.9118 0.6552 0.2381 0.6286 0.7333	Rep 7 0.9643 1.0000 1.0000 1.0000 Rep 7 0.9815 0.7917	1.0000 1.0000 1.0000 1.0000 1.0000 Rep 8 0.8182 0.8095 0.7222	Rep 9 0.9412 0.9333 0.9333 0.9615 0.9677 Rep 9 0.8438 0.5714 0.7143	1.0000 1.0000 0.9756 1.0000 Rep 10 0.8889 0.9714 0.9250
D7 Live Embryos Conc-mg ai/kg D 9.82 32.9 100 159 D8 Hatchlings per Conc-mg ai/kg D 9.82	Code N LE Detail Code	Rep 1 1.0000 0.9811 1.0000 1.0000 0.9804 1.0000 0.9167 Rep 1 0.9231 0.7692 0.9583 0.9487	Rep 2 1.0000 0.9787 1.0000 1.0000 0.9756 1.0000 1.0000 1.0000 1.0000 0.8696 0.8214 0.6364 0.7250 0.7143 0.7586	Rep 3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9231 1.0000 0.9231 0.8649 0.8043 0.9697 1.0000 0.6316 0.7941	Rep 4 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9667 0.8889 1.0000 Rep 4 0.9111 0.8667 0.4773 1.0000 0.9565	Rep 5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9744 1.0000 1.0000 0.9286 1.0000 0.9286 1.0000 0.9344 0.8000 1.0000 0.7368 0.9324	Rep 6 0.9714 1.0000 0.9130 0.9722 1.0000 1.0000 1.0000 Rep 6 0.9118 0.6552 0.2381 0.6286 0.7333 0.6667	Rep 7 0.9643 1.0000 1.0000 1.0000 Rep 7 0.9815	1.0000 1.0000 1.0000 1.0000 1.0000 Rep 8 0.8182 0.8095	Rep 9 0.9412 0.9333 0.9333 0.9615 0.9677 Rep 9 0.8438 0.5714	1.0000 1.0000 0.9756 1.0000 Rep 10 0.8889 0.9714
07 Live Embryos Conc-mg ai/kg 0 9.82 32.9 100	Code N LE Detail Code	Rep 1 1.0000 0.9811 1.0000 1.0000 0.9804 1.0000 0.9167 Rep 1 0.9231 0.7692 0.9583 0.9487 0.7000	Rep 2 1.0000 0.9787 1.0000 1.0000 0.9756 1.0000 1.0000 1.0000 1.0000 0.8696 0.8214 0.6364 0.7250 0.7143	Rep 3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9231 1.0000 Rep 3 0.8293 0.8649 0.8043 0.9697 1.0000 0.6316	0.5250 Rep 4 1.0000 1.0000 1.0000 1.0000 1.0000 0.9667 0.8889 1.0000 Rep 4 0.9111 0.8667 0.4773 1.0000 0.9565	Rep 5 1.0000 1.0000 1.0000 1.0000 1.0000 0.9744 1.0000 0.9286 1.0000 0.8636 0.9344 0.8000 1.0000 0.7368	Rep 6 0.9714 1.0000 0.9130 0.9722 1.0000 1.0000 1.0000 Rep 6 0.9118 0.6552 0.2381 0.6286 0.7333	Rep 7 0.9643 1.0000 1.0000 1.0000 Rep 7 0.9815 0.7917	1.0000 1.0000 1.0000 1.0000 1.0000 Rep 8 0.8182 0.8095 0.7222	Rep 9 0.9412 0.9333 0.9333 0.9615 0.9677 Rep 9 0.8438 0.5714 0.7143	1.0000 1.0000 0.9756 1.0000 Rep 10 0.8889

Report Date: Test Code/ID: 13 Apr-20 20:14 (p 7 of 8) 035505 50308302 / 10-1201-6135

								Code/ID:			0-1201-61
OCSPP 850.2300	Chronic Av	ian Reprodu	uction							Wildlife In	ternation
9 14d Hatchlings	per NH De	tail									
Conc-mg ai/kg	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
)	N	1.0000	1.0000	1.0000	0.9756	1.0000	1.0000	1.0000	0.9444	1.0000	1.0000
		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000				
0.82		1.0000	0.9130	0.9730	1.0000	1.0000	1.0000	1.0000	0.9412	1.0000	1.0000
		1.0000	1.0000	1.0000	1.0000	0.9375	1.0000				
32.9		0.9714	1.0000	1.0000	0.9773	1.0000	1.0000		1.0000	1.0000	0.9730
			1.0000	1.0000		1.0000	1.0000				
100		0.9762	1.0000	0.9259	1.0000	1.0000		1.0000	1.0000	1.0000	0.9630
			1.0000	1.0000	1.0000	1.0000	1.0000				
159			1.0000	1.0000	1.0000	1.0000		1.0000		1.0000	
		0.8889		1.0000	1.0000	1.0000	1.0000				
0 Eggshell Thick	ness Detai										
Conc-mg ai/kg	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 1
)	N	0.448	0.361	0.37	0.379	0.398	0.363	0.406	0.34	0.383	0.372
		0.357	0.364	0.374	0.384	0.379	0.409				
9.82		0.429	0.326	0.359	0.408	0.379	0.435	0.4	0.345	0.388	0.393
		0.361	0.374	0.366	0.386	0.384	0.382				
32.9		0.424	0.406		0.361	0.389	0.377	0.35	0.356	0.376	0.385
		0.378	0.394	0.395		0.385	0.398				
100		0.362	0.363	0.399	0.365	0.357	0.375	0.353	0.351	0.424	0.384
		0.326	0.34	0.382	0.39	0.372	0.364				
159			0.366	0.329	0.378	0.312	0.331	0.411		0.376	
		0.365		0.371	0.413	0.342	0.367				
11 Hatchling Weig	jht Detail										
Conc-mg ai/kg	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 1
)	N	36	34	40	35	36	34	35	33	33	35
		34	34	36	34	38	37				
9.82		36	32	37	38	34	35	35	36	37	36
		34	34	32	32	31	36				
32.9		37	33	44	39	42	33		37	33	28
			40	36		35	36				
100		36	34	38	34	31		35	35	36	38
			34	40	38	34	30				
159			33	35	40	33		34		36	
		35		29	31	32	33				
12 14d Survivor V	Veight Deta	il									
Conc-mg ai/kg	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 1
	N	306	276	299	302	267	279	316	326	277	297
	IN					222	310				
)	IV	245	263	334	280	320					
)	IN	328	266	281	320	299	246	282	298	295	297
).82	IN	328 266						282	298	295	
).82	IN	328	266	281	320	299	246	282	298 269	295 274	297 241
).82	IV	328 266	266 323	281 262	320 326	299 245	246 276	282			
9.82	IV	328 266	266 323 302	281 262 316	320 326	299 245 337	246 276 261	282 268			
9.82 32.9	IV	328 266 297	266 323 302 316	281 262 316 299	320 326 320	299 245 337 279	246 276 261		269	274	241
9.82 32.9 100	N	328 266 297	266 323 302 316 288	281 262 316 299 312	320 326 320 316	299 245 337 279 285	246 276 261 299		269	274	241

Report Date: Test Code/ID: 13 Apr-20 20:14 (p 8 of 8) 035505 50308302 / 10-1201-6135

OCSPP 850.2300	Chronic Av	ian Reprod	uction							Wildlife Internationa		
13 Mean Food Co	nsumption	(Adult) Det	ail									
Conc-mg ai/kg	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10	
0	N	120	151	162	136	136	157	151	112	219	200	
		186	199	151	145	152	238					
9.82		153	185	172	156	159	141	189	235	151	182	
		180	200	154	241	220	147					
32.9		197	169	109	133	166	126	169	244	152	170	
		164	137	220	165	189	161					
100		134	150	208	126	201	161	214	177	173	151	
		174	156	172	159	179	120					
159		164	112	170	207	158	123	178	189	140	254	
		164	144	182	183	184	185					
14 Weight Gain M	ALE adult	Detail										
Conc-mg ai/kg	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10	
0	N	94	38	72	21	70	120	40	181	42	5	
		139	112	-23	47	89	178					
9.82		-66	-58	121	-171	53	222	-148	20	44	54	
		9	175	136	8	143	87					
32.9		88	92	-26	-69	2	85	80	-47	-20	127	
		-41	128	94		149	6					
100		45	-3	16	-8	-86	144	-60	-24	32	4	
		45	206	55	-14	76	-77					
159		6	-157	161	59	-26	123	99		-27	-32	
		180		-44	-130	-90	77					
15 Weight Gain F	EM ALE adu	ılt Detail										
Conc-mg ai/kg	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10	
0	N	124	106	280	207	0	30	256	-3	128	3	
		148	241	281	-41	56	-14					
9.82		398	217	152	131	222	48	86	176	13	40	
		80	-157	20	126	-151	157					
32.9		124	240	-245	178	15	-103	46	-201	-3	64	
		65	45	82		-47	52					
100		298	68	-21	-28	133	-33	-11	-28	-143	-54	
		63	87	14	181	-84	-15					
159		6	-98	148	-37	-12	-106	17		-136	-107	
		-12		-3	-145	-82	92					

Report Date: Test Code/ID: 13 Apr-20 20:12 (p 1 of 30) 035505 50308302 / 10-1201-6135

									rest	Code/ID	: 035505.5	030630271	0-1201-613
OCSPP 850.2	300 C	hronic Avian Re	production									Wildlife In	ternational
Analysis ID:		832-7942	Endpoint:		ggs Laid pe		0	53		IS Versio		.9.6	
Analyzed:	13 A	Apr-20 20:00	Analysis:	Para	metric-Con	trol vs T	reatn	nents	Stati	us Level:	1		
Batch ID:	03-8	3385-5999	Test Type:	Chro	Chronic Avian Repro			Anal	yst:				
Start Date:	14 A	Apr-07	Protocol:	ocs	OCSPP 850.2300 Chronic Bird			Diluent:					
Ending Date:	11 0	Oct-07	Species:	Anas	s Platyrhyno	chos			Brin	e:			
Test Length:	180	d Oh	Taxon:					Soul	rce: V	Vhistling Wings	s, Inc.	Age: 27\	
Data Transfo	rm	Alt	Нур						NOEL	LOEL	TOEL	TU	PM SD
Untransformed	d	C >	T						32.9	100	57.36		23.90%
Dunnett Multi	iple C	omparison Test											
Control	vs	Conc-mg ai/k	Test	Stat	Critical	MSD	DF	P-Type	P-Value	Decisio	on(α:5%)		
Negative Conti	rol	9.82	1.263		2.203	11.01	30	CDF	0.2714	Non-Si	gnificant Effect		
		32.9	2.182		2.203	11.19	29	CDF	0.0523	Non-Sig	gnificant Effect		
		100*	3.251		2.203	11.01	30	CDF	0.0032	Signific	ant Effect		
		159*	5.724		2.203	11.39	28	CDF	1.3E-06	Signific	ant Effect		
ANOVA Table)												
Source		Sum Squares	Mean	Squa	are	DF		F Stat	P-Value	Decisio	on(α:5%)		
Between		7463.44	1865.	86		4		9.336	3.9E-06	Signific	ant Effect		
Error		14389.7	199.8	56		72		15					
Total		21853.1				76		- -					
ANOVA Assu	mptic	ons Tests											
Attribute		Test				Test S	tat	Critical	P-Value	Decisio	on(α:1%)		
Variance		Bartlett Equality	of Variance Te	est		3.372		13.28	0.4975	Equal \	/ariances		
Distribution		Shapiro-Wilk W	Normality Tes	t		0.9841		0.9564	0.4496	Normal	Distribution		
01 Eggs Laid	per F	Pen Summary											
Conc-mg ai/k	g	Code Cou	ınt Mean	ĺį.	95% LCL	95% U	CL	Median	Min	Max	Std Err	CV%	%Effect
0		N 16	47.69		40.22	55.15		48	23	71	3.503	29.38%	0.00%
9.82		16	41.38		34.08	48.67		39.5	19	67	3.422	33.08%	13.24%
32.9		15	36.6		26.68	46.52		39	1	60	4.626	48.95%	23.25%
100		16	31.44		25.51	37.36		32	13	51	2.781	35.38%	34.08%

Graphics

159

14

18.07

10.42

25.73

19.5

0

44

3.543

73.36%

62.10%

Report Date: Test Code/ID: 13 Apr-20 20:12 (p 2 of 30) 035505 50308302 / 10-1201-6135

OCSPP 850.23	300 Chronic Avia	n Reproduction							Wildlife	International
Analysis ID: Analyzed:	14-2302-8323 13 Apr-20 20:04	Endpoint: Analysis:	01 Eggs Laid per Pen Parametric-Control vs Ord.Treatments			23205 0	IS Version us Level:	: CETISV 1	1.9.6	
Batch ID:	03-8385-5999	Test Type:	Chronic Avian Repro			Anal	yst:			
Start Date:	14 Apr-07	Protocol:	OCSPP 850.2	300 Chronic E	Bird	Dilue	ent:			
Ending Date:	11 Oct-07	Species:	Anas Platyrhyi	nchos		Brin	e:			
Test Length:	180d Oh	Taxon:				Soul	ce: W	histling Wing	js, Inc.	Age: 27w
Data Transfor	m	Alt Hyp				NOEL	LOEL	TOEL	TU	PMSD
Untransformed	ĺ	C > T				9.82	32.9	17.97		19.20%
Williams Mult	iple Comparison	Test								
Control	vs Conc-mg	ai/k Test	Stat Critical	MSD DF	P-Type	P-Value	Decision	η(α:5%)		
Negative Contr	ol 9.82	1.263	1.667	8.33 30	CDF	>0.05	Non-Sigr	nificant Effec	t	
	32.9*	2.182	1.739	8.836 29	CDF	< 0.05	Significa	nt Effect		
	100*	3.251	1.765	8.82 30	CDF	< 0.05	Significa	nt Effect		
	159*	5.724	1.769	9.154 28	CDF	<0.05	Significa	nt Effect		
ANOVA Table	10 00 00 00									
Source	Sum Squa	ares Mear	Square	DF	F Stat	P-Value	Decision	η(α:5%)		
Between	7463.44	1865.	86	4	9.336	3.9E-06	Significa	nt Effect		
Error	14389.7	199.8	56	72						
Total	21853.1			76	-					
ANOVA Assur	nptions Tests									
Attribute	Test			Test Stat	Critical	P-Value	Decision	η(α:1%)		

01 Eggs Laid per Pen Summary

Conc-mg ai/kg	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	N	16	47.69	40.22	55.15	48	23	71	3.503	29.38%	0.00%
9.82		16	41.38	34.08	48.67	39.5	19	67	3.422	33.08%	13.24%
32.9		15	36.6	26.68	46.52	39	1	60	4.626	48.95%	23.25%
100		16	31.44	25.51	37.36	32	13	51	2.781	35.38%	34.08%
159		14	18.07	10.42	25.73	19.5	0	44	3.543	73.36%	62.10%

3.372

0.9841

13.28

0.9564

0.4975

0.4496

Graphics

Variance

Distribution

Bartlett Equality of Variance Test

Shapiro-Wilk W Normality Test

Equal Variances

Normal Distribution

Report Date: Test Code/ID: 13 Apr-20 20:12 (p 3 of 30) 035505 50308302 / 10-1201-6135

									Test	Code/ID:	035505 5	03083027	10-1201-613
OCSPP 850.23	300 Ch	ıronic Avian Re	production									Wildlife lı	nternationa
Analysis ID:	07-68	372-2017	Endpoint:	02	Eggs Not Cr	acked p	er EL	1	CET	IS Version	: CETISV	1.9.6	
Analyzed:	13 Ap	or-20 20:03	Analysis:	No	nparametric-	Multiple	Com	parison	Stati	us Level:	1		
Batch ID:	03-83	885-5999	Test Type:	Chi	ronic Avian F	Repro			Anal	yst:			
Start Date:	14 Ap	or-07	Protocol:	OC	SPP 850.23	00 Chro	nic B	Bird	Diluent:				
Ending Date:	11 0	ct-07	Species:	Ana	as Platyrhyno	chos			Brin	e:			
Test Length:	180d	0h	Taxon:		5 5				Soul	rce: W	histling Wing	s, Inc.	Age: 27
Data Transfor	rm	Alt	Нур						NOEL	LOEL	TOEL	TU	PMSD
Untransformed	t	C >	Т						159	>159	n/a		2.02%
Wilcoxon/Bor	nferror	ni Adj Test											
Control	VS	Conc-mg ai/k	Test	Stat	Critical	Ties	DF	P-Type	P-Value	Decision	η(α:5%)		
Negative Contr	rol	9.82	0.222	25	1.645	2	30	Asymp	1.0000	Non-Sigr	nificant Effect	t	
		32.9	-0.46	84	1.645	2	29	Asymp	1.0000	Non-Sign	nificant Effect		
		100	0.422	26	1.645	1	30	Asymp	1.0000	Non-Sign	nificant Effect	t	
		159	-0.64	09	1.645	1	26	Asymp	1.0000	Non-Sigr	nificant Effect	t	
ANOVA Table	6												
Source		Sum Squares	Mea	ı Squ	ıare	DF		F Stat	P-Value	Decision	າ(α:5%)		
Between		0.0007927	0.000	1982	2	4		0.381	0.8215	Non-Sigr	nificant Effect		
Error		0.0364118	0.000)5202	2	70		25					
Total		0.0372045				74		-					
ANOVA Assur	mptior	ns Tests											
Attribute		Test				Test :	Stat	Critical	P-Value	Decision	n(α:1%)		
Variance		Bartlett Equality	of Variance T	est		12.8		13.28	0.0123	Equal Va	ariances		
Distribution		Shapiro-Wilk W	Normality Te	st		0.7		0.9554	4.3E-11	Non-Nor	mal Distributi	on	
02 Eggs Not C	Cracke	d per EL Summ	nary										
Conc-mg ai/k	g	Code Co	unt Meai	1	95% LCL	95% l	JCL	Median	Min	Max	Std Err	CV%	%Effect
0		N 16	0.989	94	0.9800	0.998	8	1.0000	0.9500	1.0000	0.0044	1.78%	0.00%
9.82		16	0.987	78	0.9774	0.998	1	1.0000	0.9318	1.0000	0.0049	1.97%	0.17%
32.9		15	0.993	34	0.9860	1.000	0	1.0000	0.9524	1.0000	0.0035	1.35%	-0.40%
100		16	0.983	35	0.9683	0.998	7	1.0000	0.9000	1.0000	0.0071	2.89%	0.60%

Graphics

159

12

0.9873

0.9668

1.0000

1.0000

0.8947

1.0000

0.0093

3.26%

0.22%

Report Date: Test Code/ID: 13 Apr-20 20:12 (p 4 of 30) 035505 50308302 / 10-1201-6135

UCSPP 850.2	300 Chronic	Avian Rep	roduction							Wildlife	International
Analysis ID: Analyzed:	05-0534-86 13 Apr-20	1976 0756	Endpoint: Analysis:	02 Eggs Not C Nonparametric	100 to 100	EL Ord. Treatmen	co sarran co	IS Version us Level:	: CETISv1	.9.6	
Batch ID:	03-8385-59	999	Test Type:	Chronic Avian	Repro		Anal	yst:			
Start Date:	14 Apr-07		Protocol:	OCSPP 850.2	300 Chroni	c Bird	Dilue	ent:			
Ending Date:	11 Oct-07		Species:	Anas Platyrhyr	nchos		Brine	e:			
Test Length:	180d 0h		Taxon:				Sour	rce: Wi	histling Wings	, Inc.	Age: 27w
Data Transfor	rm	Alt	Нур				NOEL	LOEL	TOEL	TU	
Untransformed	<u></u>	C > 1	Т				159	>159	n/a		
Jonckheere-T		p-Down Te	st Test S	Stat Critical	Ties	P-Type	P-Value	Decision	η(α:5%)		
Control	vs Cor	nc-mg ai/k			Ties 2	P-Type Asymp	P-Value 0.6859		n(α:5%) nificant Effect		
	vs Cor	· nc-mg ai/k ?	Test S	1.645				Non-Sigr	· · · ·		
Control	vs Cor	· nc-mg ai/k ?	Test \$	7 1.645 2 1.645	2	Asymp	0.6859	Non-Sigr Non-Sigr	nificant Effect		
Control	vs Cor rol 9.82 32.9	nc-mg ai/k ?)	Test S 0.2447 -0.484	7 1.645 2 1.645 5 1.645	2 4	Asymp Asymp	0.6859 0.6859	Non-Sigr Non-Sigr Non-Sigr	nificant Effect		
Control	vs Cor rol 9.82 32.9 100 159	nc-mg ai/k ?)	Test \$ 0.2447 -0.484 0.1685	7 1.645 2 1.645 5 1.645	2 4 4	Asymp Asymp Asymp	0.6859 0.6859 0.6560	Non-Sigr Non-Sigr Non-Sigr	nificant Effect nificant Effect nificant Effect		
Control Negative Contr	vs Cor rol 9.82 32.9 100 159	nc-mg ai/k ?)	Test \$ 0.2447 -0.484 0.1685 -0.401	7 1.645 2 1.645 5 1.645	2 4 4	Asymp Asymp Asymp	0.6859 0.6859 0.6560	Non-Sigr Non-Sigr Non-Sigr	nificant Effect nificant Effect nificant Effect nificant Effect		
Control Negative Contr	vs Cor rol 9.82 32.9 100 159	oc-mg ai/k	Test \$ 0.2447 -0.484 0.1685 -0.401	1.645 2 1.645 5 1.645 5 1.645 Square	2 4 4 5	Asymp Asymp Asymp Asymp	0.6859 0.6859 0.6560 0.6560	Non-Sigr Non-Sigr Non-Sigr Non-Sigr	nificant Effect nificant Effect nificant Effect nificant Effect		
Control Negative Contr ANOVA Table Source	vs Cor rol 9.82 32.9 100 159 Sum 0.00	oc-mg ai/k	Test \$ 0.2447 -0.484 0.1685 -0.401	1.645 2 1.645 5 1.645 5 1.645 Square 982	2 4 4 5 DF	Asymp Asymp Asymp Asymp	0.6859 0.6859 0.6560 0.6560	Non-Sigr Non-Sigr Non-Sigr Non-Sigr	nificant Effect nificant Effect nificant Effect nificant Effect		

Attribute	Test	Test Stat	Critical	P-Value	Decision(α:1%)
Variance	Bartlett Equality of Variance Test	12.8	13.28	0.0123	Equal Variances
Distribution	Shapiro-Wilk W Normality Test	0.7	0.9554	4.3E-11	Non-Normal Distribution

02 Eggs Not Cracked per EL Summary

Conc-mg ai/kg	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	N	16	0.9894	0.9800	0.9988	1.0000	0.9500	1.0000	0.0044	1.78%	0.00%
9.82		16	0.9878	0.9774	0.9981	1.0000	0.9318	1.0000	0.0049	1.97%	0.17%
32.9		15	0.9934	0.9860	1.0000	1.0000	0.9524	1.0000	0.0035	1.35%	-0.40%
100		16	0.9835	0.9683	0.9987	1.0000	0.9000	1.0000	0.0071	2.89%	0.60%
159		12	0.9873	0.9668	1.0000	1.0000	0.8947	1.0000	0.0093	3.26%	0.22%

Graphics

Report Date:

13 Apr-20 20:12 (p 5 of 30)

	Test Code/ID:	035505 50308302 / 10-1201-6135
OCSPP 850.2300 Chronic Avian Reproduction		Wildlife International

Analysis ID:	09-6310-0389	Endpoint:	03 Viable Embryos per ES	CETIS Version:	CETISv1.9.6
Analyzed:	13 Apr-20 20:03		Nonparametric-Multiple Comparison	Status Level:	1

Batch ID:03-8385-5999Test Type:Chronic Avian ReproAnalyst:Start Date:14 Apr-07Protocol:OCSPP 850.2300 Chronic BirdDiluent:Ending Date:11 Oct-07Species:Anas PlatyrhynchosBrine:

Test Length: 180d 0h Taxon: Source: Whistling Wings, Inc. Age: 27w

Data Transform	Alt Hyp	NOEL	LOEL	TOEL	TU	PMSD
Untransformed	C > T	159	>159	n/a		28.25%

Wilcoxon/Bonferroni Adj Test

Control	VS	Conc-mg ai/k	Test Stat	Critical	Ties	DF	P-Type	P-Value	Decision(a:5%)
Negative Co	ontrol	9.82	-1.039	1.645	2	30	Asymp	1.0000	Non-Significant Effect
		32.9	-0.09938	1.645	1	29	Asymp	1.0000	Non-Significant Effect
		100	-0.1722	1.645	1	30	Asymp	1.0000	Non-Significant Effect
		159	-0.5432	1.645	2	26	Asymp	1.0000	Non-Significant Effect

ANOVA Table

Source	Sum Squares	Mean Square	DF	F Stat	P-Value	Decision(α:5%)
Between	0.181455	0.0453638	4	0.5665	0.6877	Non-Significant Effect
Error	5.60509	0.0800727	70			
Total	5.78654		74			

ANOVA Assumptions Tests

Attribute	Test	Test Stat	Critical	P-Value	Decision(α:1%)
Variance	Bartlett Equality of Variance Test	17.3	13.28	0.0017	Unequal Variances
Distribution	Shapiro-Wilk W Normality Test	0.7014	0.9554	4.6E-11	Non-Normal Distribution

03 Viable Embryos per ES Summary

Conc-mg ai/kg	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	N	16	0.8761	0.7908	0.9614	0.9388	0.4333	1.0000	0.0400	18.28%	0.00%
9.82		16	0.8975	0.8097	0.9854	0.9742	0.4898	1.0000	0.0412	18.37%	-2.45%
32.9		15	0.7704	0.5570	0.9838	0.9500	0.0000	1.0000	0.0995	50.02%	12.07%
100		16	0.7929	0.6103	0.9755	0.9414	0.0000	1.0000	0.0857	43.22%	9.50%
159		12	0.8444	0.6556	1.0000	0.9521	0.0000	1.0000	0.0858	35.20%	3.61%

Graphics

Report Date: Test Code/ID: 13 Apr-20 20:12 (p 6 of 30) 035505 50308302 / 10-1201-6135

								Te	st Code/ID	: 035505	50308302 / 1	10-1201-613
OCSPP 850.2:	300 C	hronic Avian Re	production								Wildlife Ir	nternational
Analysis ID: Analyzed:		6007-4209 Apr-20 20:10	Endpoint: Analysis:		/iable Embr parametric-	yos per ES Control vs O	rd. Treatme		TIS Versio atus Level:		1.9.6	
Batch ID:	03-8	385-5999	Test Type:	Chr	onic Avian F	Repro		An	alyst:			
Start Date:	14 A	pr-07	Protocol:	OC	SPP 850.23	00 Chronic E	Bird	Dil	uent:			
Ending Date:	11 C	oct-07	Species:	Ana	s Platyrhyno	chos		Bri	ne:			
Test Length:	1800	d Oh	Taxon:					So	urce: V	Whistling Wing	ıs, Inc.	Age: 27v
Data Transfor	m	Alt	Нур					NOEL	LOEL	TOEL	TU	
Untransformed	t	C >	·T					159	>159	n/a		
Jonckheere-T	erps	tra Step-Down T	est									
Control	vs	Conc-mg ai/k	Test	Stat	Critical	Ties	P-Type	P-Value	Decisio	on(α:5%)		
Negati∨e Contr	rol	9.82	-1.02		1.645	2	Asymp	0.8460	Non-Si	gnificant Effec	t	
		32.9	-0.03	958	1.645	4	Asymp	0.5550	Non-Si	gnificant Effec	t	
		100	0.118	6	1.645	5	Asymp	0.5550	Non-Si	gnificant Effec	t	
		159	-0.13	83	1.645	5	Asymp	0.5550	Non-Si	gnificant Effec	t	
ANOVA Table	ĺ.											
Source		Sum Squares	Mear	Squ	are	DF	F Stat	P-Value	Decisio	on(α:5%)		
Between		0.181455	0.045	3638		4	0.5665	0.6877	Non-Si	gnificant Effec	t	
Error		5.60509	0.080	0727		70	-35					
Total		5.78654				74						
ANOVA Assui	mptio	ns Tests										
Attribute		Test				Test Stat	Critical	P-Value	Decision	on(α:1%)		
Variance		Bartlett Equality	of Variance T	est		17.3	13.28	0.0017	Unequa	al Variances		
Distribution		Shapiro-Wilk W	Normality Tes	st		0.7014	0.9554	4.6E-11	Non-No	ormal Distribut	ion	
03 Viable Emi	oryos	per ES Summa	ry									
Conc-mg ai/k	g	Code Co	unt Mear	1	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0		N 16	0.876	31	0.7908	0.9614	0.9388	0.4333	1.0000	0.0400	18.28%	0.00%
9.82		16	0.897	'5	0.8097	0.9854	0.9742	0.4898	1.0000	0.0412	18.37%	-2.45%

Graphics

32.9

100

159

15

16

12

0.5570

0.6103

0.6556

0.7704

0.7929

0.8444

0.9838

0.9755

1.0000

1.0000

1.0000

1.0000

0.0995

0.0857

0.0858

50.02%

43.22%

35.20%

12.07%

9.50%

3.61%

0.0000

0.0000

0.0000

0.9500

0.9414

0.9521

Report Date: Test Code/ID: 13 Apr-20 20:12 (p 7 of 30) 035505 50308302 / 10-1201-6135

OCSPP 850.23	300 C	hronic Avian Rep	roduction									Wildlife	International
Analysis ID: Analyzed:	08180 At.	874-5389 pr-20 20:03	Endpoint: Analysis:		Live Embryo	AND THE PARTY AND THE		parison	25705 0	IS Versior us Level:	ı: CETISv 1	1.9.6	
Batch ID:	03-8	385-5999	Test Type:	Chi	onic Avian	Repro			Anal	yst:			
Start Date:	14 A	pr-07	Protocol:	OC	SPP 850.23	300 Chro	nic B	ird	Dilue	ent:			
Ending Date:	11 0	ct-07	Species:	Ana	as Platyrhyn	chos			Brin	e:			
Test Length:	180d	l Oh	Taxon:						Soul	ce: W	histling Wing	s, Inc.	Age: 27w
Data Transfor	m	Alt I	Нур						NOEL	LOEL	TOEL	TU	PMSD
Untransformed	I	C > 1	T						159	>159	n/a		28.20%
Wilcoxon/Bor	ferro	ni Adj Test											
Control	vs	Conc-mg ai/k	Test	Stat	Critical	Ties	DF	P-Type	P-Value	Decision	n(α:5%)		
Negative Contr	ol	9.82	-0.739	7	1.645	2	30	Asymp	1.0000	Non-Sig	nificant Effec		
		32.9	0.138	5	1.645	2	29	Asymp	1.0000	Non-Sig	nificant Effec		
		100	-0.399	9	1.645	2	30	Asymp	1.0000	Non-Sig	nificant Effec	i	
		159	0.209	3	1.645	3	26	Asymp	1.0000	Non-Sig	nificant Effec	Ê	
ANOVA Table													
Source		Sum Squares	Mean	Squ	ıare	DF		F Stat	P-Value	Decisio	າ(α:5%)		
Between		0.174136	0.043	5339)	4		0.5568	0.6947	Non-Sig	nificant Effec		
Error		5.47253	0.078	179		70		<u> </u>					
Total		5.64666			·	74		-					

:<u>"</u>

Attribute	Test	Test Stat	Critical	P-Value	Decision(α:1%)
Variance	Bartlett Equality of Variance Test	17.29	13.28	0.0017	Unequal Variances
Distribution	Shapiro-Wilk W Normality Test	0.7164	0.9554	9.7E-11	Non-Normal Distribution

04 Live Embryos per ES Summary

Conc-mg ai/kg	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	N	16	0.8673	0.7817	0.9529	0.9312	0.4333	1.0000	0.0402	18.53%	0.00%
9.82		16	0.8865	0.8006	0.9723	0.9653	0.4898	1.0000	0.0403	18.18%	-2.21%
32.9		15	0.7602	0.5494	0.9709	0.9474	0.0000	1.0000	0.0983	50.06%	12.35%
100		16	0.7889	0.6068	0.9710	0.9414	0.0000	1.0000	0.0854	43.31%	9.04%
159		12	0.8150	0.6315	0.9984	0.9330	0.0000	1.0000	0.0833	35.42%	6.03%

Graphics

Report Date: Test Code/ID:

Source:

Whistling Wings, Inc.

13 Apr-20 20:12 (p 8 of 30) 035505 50308302 / 10-1201-6135

Age: 27w

OCSPP 850.2	300 Chronic Avian Repr	roduction			Wildlife International
Analysis ID: Analyzed:	20-1331-1920 13 Apr-20 20:04		04 Live Embryos per ES Nonparametric-Control vs Ord. Treatments	CETIS Version: Status Level:	CETISv1.9.6 1
Batch ID:	03-8385-5999	The second secon	Chronic Avian Repro	Analyst:	
Start Date:	14 Apr-07	Protocol:	OCSPP 850.2300 Chronic Bird	Diluent:	
Ending Date:	11 Oct-07	Species:	Anas Platyrhynchos	Brine:	

				70000 10000	a market	40.00%
Data Transform	Alt Hyp	NOEL	LOEL	TOEL	TU	
Untransformed	C > T	159	>159	n/a		

Jonckheere-Terpstra Ster	Daves Took
Jonekheere-Ternstra Ster	1-IJOWO LAST

Taxon:

Test Length: 180d 0h

Control	VS	Conc-mg ai/k	Test Stat	Critical	Ties	P-Type	P-Value	Decision(a:5%)
Negative Co	ntrol	9.82	-0.7198	1.645	1	Asymp	0.7642	Non-Significant Effect
		32.9	0.1665	1.645	3	Asymp	0.5222	Non-Significant Effect
		100	-0.05564	1.645	5	Asymp	0.5222	Non-Significant Effect
		159	0.2872	1.645	7	Asymp	0.3870	Non-Significant Effect

ANOVA Table

Source	Sum Squares	Mean Square	DF	F Stat	P-Value	Decision(α:5%)
Between	0.174136	0.0435339	4	0.5568	0.6947	Non-Significant Effect
Error	5.47253	0.078179	70	*		
Total	5.64666		74			

ANOVA Assumptions Tests

Attribute	Test	Test Stat	Critical	P-Value	Decision(α:1%)
Variance	Bartlett Equality of Variance Test	17.29	13.28	0.0017	Unequal Variances
Distribution	Shapiro-Wilk W Normality Test	0.7164	0.9554	9.7E-11	Non-Normal Distribution

04 Live Embryos per ES Summary

Conc-mg ai/kg	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	N	16	0.8673	0.7817	0.9529	0.9312	0.4333	1.0000	0.0402	18.53%	0.00%
9.82		16	0.8865	0.8006	0.9723	0.9653	0.4898	1.0000	0.0403	18.18%	-2.21%
32.9		15	0.7602	0.5494	0.9709	0.9474	0.0000	1.0000	0.0983	50.06%	12.35%
100		16	0.7889	0.6068	0.9710	0.9414	0.0000	1.0000	0.0854	43.31%	9.04%
159		12	0.8150	0.6315	0.9984	0.9330	0.0000	1.0000	0.0833	35.42%	6.03%

Graphics

Report Date: Test Code/ID: 13 Apr-20 20:12 (p 9 of 30) 035505 50308302 / 10-1201-6135

									VAVAVA.E		5474777654769		PRESENTATION ACCESSES	
OCSPP 850.23	300 C	hronic Avian	Reprodu	ction								Wildlife I	International	
Analysis ID: Analyzed:	13-5897-2566 13 Apr-20 20:03			Endpoint: 05 Hatchling Analysis: Nonparame		per ES c-Multiple Comparison				TIS Version: CETISv1.9.6 tus Level: 1				
Batch ID:	03-8385-5999		Tes	Test Type: Chronic Avian Repro					Anal	yst:				
Start Date:	14 Apr-07		Prof	Protocol: OCSPP 850.23			nic B	ird	Dilue	ent:				
Ending Date:	11 C	oct-07	Spe	Species: Anas Platyrhynchos					Brin	e:				
Test Length:	1800	d Oh	Tax	Taxon:					Source: Whistling Wings, Inc. Age: 279					
Data Transfor	m	P	Alt Hyp						NOEL	LOEL	TOEL	TU	PMSD	
Untransformed C >			C > T						159	>159	n/a		30.45%	
Wilcoxon/Bor	nferro	ni Adj Test												
Control	vs	Conc-mg ai	/k	Test Stat	Critical	Ties	DF	P-Type	P-Value	Decision	ι(α:5%)			
Negative Control	ol	9.82		0.6408	1.645	1	30	Asymp	1.0000	Non-Significant Effect				
		32.9		1.68	1.645	0	29	Asymp	0.1859	Non-Sign	ificant Effec	t		
		100		0.3204	1.645	0	30	Asymp	1.0000	Non-Sign	ificant Effec	t		
		159		0.9522	1.645	1	26	Asymp	0.6820	Non-Significant Effect				
ANOVA Table	3													
Source Sum Squares		s	Mean Square		DF		F Stat	P-Value	P-Value Decision(α:5%)					
Between		0.220268		0.0550669)	4		0.7991	0.5298	Non-Sign	ificant Effec	f		
Error		4.82356		0.0689081		70		15						
Total		5.04383				74								
ANOVA Assur	nptio	ns Tests												
Attribute Test					Test Stat		Critical	P-Value	Decision(α:1%)					
Variance		Bartlett Equality of Variance Test 8.068 13.28						13.28	0.0891	Equal Variances				
Distribution Shapiro-Wilk W Normality Test 0					0.911	3	0.9554	6.4E-05	Non-Norr	mal Distribut	ion			
05 Hatchlings	per l	ES Summary												
Conc-mg ai/kg	g	Code C	Count	Mean	95% LCL	95% L	JCL	Median	Min	Max	Std Err	CV%	%Effect	
		2001	ANDS			ati econocide	-11		100000000000000000000000000000000000000		100000000000000000000000000000000000000	00 10 10 00 00 00 00 00 00 00 00 00 00 0		

Graphics

0

9.82

32.9

100

159

16

16

15

16

12

0.7542

0.6802

0.5872

0.6625

0.6583

0.6693

0.5595

0.4143

0.4932

0.4876

0.8391

0.8009

0.7601

0.8318

0.8291

0.8125

0.6427

0.6471

0.7836

0.7188

0.4000

0.2174

0.0000

0.0000

0.0000

0.9211

0.9714

1.0000

1.0000

0.9565

0.0398

0.0566

0.0806

0.0794

0.0776

21.13%

33.31%

53.16%

47.95%

40.82%

0.00%

9.81%

22.13%

12.15%

12.70%

Report Date: Test Code/ID: 13 Apr-20 20:12 (p 10 of 30) 035505 50308302 / 10-1201-6135

OCSPP 850.2	300 C	hronic Avian Rep	roduction								Wildlife	International
Analysis ID: Analyzed:	G8/800 80	5198-5037 Apr-20 20:04	Endpoint: Analysis:		Hatchlings p	oer ES -Control vs O	rd. Treatment	25000	TIS Versioi tus Level:	n: CETISv1 1	.9.6	
Batch ID:	03-8	3385-5999	Test Type:	Chr	onic Avian I	Repro		An	alyst:			
Start Date:	14 A	Apr-07	Protocol:	OC:	SPP 850.23	300 Chronic E	Bird	Dile	uent:			
Ending Date:	11 C	Oct-07	Species:	Ana	s Platyrhyn	chos		Bri	ne:			
Test Length:	180	d Oh	Taxon:					So	urce: V	histling Wing	s, Inc.	Age: 27w
Data Transfo	m	Alt I	l yp					NOEL	LOEL	TOEL	TU	
Untransformed	t	C > -						159	>159	n/a		
Jonckheere-1	erps	tra Step-Down Tes	st									
Control	VS	Conc-mg ai/k	Test \$	Stat	Critical	Ties	P-Type	P-Value	Decisio	n(α:5%)		
Negative Conti	ol	9.82	0.659	7	1.645	2	Asymp	0.2596	Non-Sig	nificant Effect		
		32.9	1.367		1.645	4	Asymp	0.2596	Non-Sig	nificant Effect		
		100	0.644	7	1.645	4	Asymp	0.2596	Non-Sig	nificant Effect		
		159	0.6504	4	1.645	5	Asymp	0.2577	Non-Sig	nificant Effect		
ANOVA Table	ſ											
Source		Sum Squares	Mean	Squ	are	DF	F Stat	P-Value	Decisio	n(α:5%)		
Between		0.220268	0.0550	0669		4	0.7991	0.5298	Non-Sig	nificant Effect		
Error		4.82356	0.0689	9081		70						
Total		5.04383				74						
ANOVA Assu	mptic	ons Tests										
Attribute		Test				Test Stat	Critical	P-Value	Decisio	n(α:1%)		
Variance		Bartlett Equality of	f Variance Te	st		8.068	13.28	0.0891	Equal V	ariances		

05 Hatchlings per ES Summary

Conc-mg ai/kg	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	N	16	0.7542	0.6693	0.8391	0.8125	0.4000	0.9211	0.0398	21.13%	0.00%
9.82		16	0.6802	0.5595	0.8009	0.6427	0.2174	0.9714	0.0566	33.31%	9.81%
32.9		15	0.5872	0.4143	0.7601	0.6471	0.0000	1.0000	0.0806	53.16%	22.13%
100		16	0.6625	0.4932	0.8318	0.7836	0.0000	1.0000	0.0794	47.95%	12.15%
159		12	0.6583	0.4876	0.8291	0.7188	0.0000	0.9565	0.0776	40.82%	12.70%

0.9113

0.9554

6.4E-05

Graphics

Distribution

Shapiro-Wilk W Normality Test

Non-Normal Distribution

Report Date:

13 Apr-20 20:12 (p 11 of 30)

OCSPP 850.2300 Chronic Avian Reproduction		Wildlife International
	Test Code/ID:	035505 50308302 / 10-1201-6135

Analysis ID:10-3925-2514Endpoint:06 14d Hatchlings per ESCETIS Version:CETIS V1.9.6Analyzed:13 Apr-20 20:03Analysis:Nonparametric-Multiple ComparisonStatus Level:1

Batch ID:03-8385-5999Test Type:Chronic Avian ReproAnalyst:Start Date:14 Apr-07Protocol:OCSPP 850.2300 Chronic BirdDiluent:Ending Date:11 Oct-07Species:Anas PlatyrhynchosBrine:

Test Length: 180d 0h Taxon: Source: Whistling Wings, Inc. Age: 27w

Data Transform	Alt Hyp	NOEL	LOEL	TOEL	TU	PMSD
Untransformed	C > T	159	>159	n/a		30.40%

Wilcoxon/Bonferroni Adj Test

Control	vs	Conc-mg ai/k	Test Stat	Critical	Ties	DF	P-Type	P-Value	Decision(α:5%)
Negative Co	ontrol	9.82	0.7726	1.645	0	30	Asymp	0.8795	Non-Significant Effect
		32.9	1.759	1.645	0	29	Asymp	0.1571	Non-Significant Effect
		100	0.3015	1.645	1	30	Asymp	1.0000	Non-Significant Effect
		159	0.9058	1.645	1	26	Asymp	0.7301	Non-Significant Effect

ANOVA Table

Source	Sum Squares	Mean Square	DF	F Stat	P-Value	Decision(α:5%)
Between	0.220473	0.0551184	4	0.8112	0.5223	Non-Significant Effect
Error	4.75646	0.0679494	70			
Total	4.97693		74	*		

ANOVA Assumptions Tests

Attribute	Test	Test Stat	Critical	P-Value	Decision(α:1%)
Variance	Bartlett Equality of Variance Test	8.036	13.28	0.0903	Equal Variances
Distribution	Shapiro-Wilk W Normality Test	0.9155	0.9554	9.9E-05	Non-Normal Distribution

06 14d Hatchlings per ES Summary

Conc-mg ai/kg	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	N	16	0.7500	0.6660	0.8341	0.8048	0.4000	0.9211	0.0394	21.03%	0.00%
9.82		16	0.6704	0.5497	0.7911	0.6340	0.2174	0.9714	0.0566	33.79%	10.62%
32.9		15	0.5829	0.4120	0.7538	0.6471	0.0000	1.0000	0.0797	52.94%	22.28%
100		16	0.6563	0.4880	0.8245	0.7836	0.0000	1.0000	0.0789	48.10%	12.50%
159		12	0.6514	0.4816	0.8212	0.6771	0.0000	0.9565	0.0771	41.02%	13.15%

Report Date: Test Code/ID: 13 Apr-20 20:12 (p 12 of 30) 035505 50308302 / 10-1201-6135

OCSPP 850.2									Code/ID:			0-1201-613
	300 C	hronic Avia	n Reprod	duction							Wildlife In	ternational
Analysis ID:	14-3	223-7439	Е	ndpoint: 06	14d Hatchlin	gs per ES		CET	1S Version	: CETISV1	.9.6	
Analyzed:	13 A	pr-20 20:04	A	nalysis: No	nparametric-	Control vs O	rd. Treatme	nts S tat	us Level:	1		
Batch ID:	03-8	385-5999	T	est Type: Chi	ronic Avian F	Repro		Ana	lyst:			
Start Date:	14 A	pr-07	Pi	rotocol: OC	SPP 850.23	00 Chronic E	Bird	Dilu	ent:			
Ending Date:	11 C	ct-07	s	pecies: Ana	as Platyrhyno	chos		Brin	e:			
Test Length:	1800	l Oh	T	axon:				Sou	rce: WI	histling Wing	s, Inc.	Age: 27v
Data Transfor	m		Alt Hyp)				NOEL	LOEL	TOEL	TU	
Untransformed	t		C > T					159	>159	n/a		
Jonckheere-T	erpst	ra Step-Dov	vn Test									
Control	vs	Conc-mg	ai/k	Test Stat	Critical	Ties	P-Type	P-Value	Decision	າ(α:5%)		
Negative Contr	rol	9.82		0.7915	1.645	1	Asymp	0.2607	Non-Sigr	nificant Effect		
		32.9		1.357	1.645	4	Asymp	0.2607	Non-Sigr	nificant Effect		
		100		0.6447	1.645	5	Asymp	0.2607	Non-Sigr	nificant Effect		
		159		0.6411	1.645	6	Asymp	0.2607	Non-Sigr	nificant Effect		
ANOVA Table	ſ											
Source		Sum Squa	res	Mean Squ	ıare	DF	F Stat	P-Value	Decision	η(α:5%)		
Between		0.220473		0.0551184		4	0.8112	0.5223	Non-Sigr	nificant Effect		
Error		4.75646		0.0679494		70	-14					
Total		4.97693				74						
ANOVA Assu	mptio	ns Tests										
Attribute		Test				Test Stat	Critical	P-Value	Decision	MAN CONTROL OF THE PROPERTY OF		
Variance		Bartlett Equ	uality of V	ariance Test		8.036	13.28	0.0903	Equal Va	riances		
Distribution		Shapiro-Wi	ilk W Nor	mality Test		0.9155	0.9554	9.9E-05	Non-Nor	mal Distributi	on	
06 14d Hatchl	ings	oer ES Sum	mary									
	g	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
Conc-mg ai/k				14 52 (2.71)		0.0044	0.0040	0.4000	0.0044		100 000 000 000 000	
Conc-mg ai/k		N	16	0.7500	0.6660	0.8341	0.8048	0.4000	0.9211	0.0394	21.03%	0.00%
		N	16 16 15	0.7500 0.6704 0.5829	0.6660 0.5497 0.4120	0.8341 0.7911 0.7538	0.8048 0.6340 0.6471	0.4000 0.2174 0.0000	0.9211 0.9714 1.0000	0.0394 0.0566 0.0797	21.03% 33.79% 52.94%	0.00% 10.62% 22.28%

Graphics

100

159

16

12

0.4880

0.4816

0.6563

0.6514

0.8245

0.8212

1.0000

0.9565

0.0789

0.0771

12.50%

13.15%

48.10%

41.02%

0.0000

0.0000

0.7836

0.6771

Report Date: Test Code/ID:

13 Apr-20 20:12 (p 13 of 30) 035505 50308302 / 10-1201-6135

OCSPP 850.2	300 C	hronic Avian Rep	roduction									Wildlif	e International
Analysis ID: Analyzed:	G8/80 60	265-4501 .pr-20 20:03	Endpoint: Analysis:		e Embryo arametric-	and we de-		parison	CETIS Version: CETIS Status Level: 1			1.9.6	
Batch ID: Start Date: Ending Date: Test Length:	14 A 11 C	385-5999 .pr-07 oct-07	Test Type: Chronic Avian Repro Protocol: OCSPP 850.2300 Chronic Bird Species: Anas Platyrhynchos Taxon:				ird	Analyst: Diluent: Brine: Source: Whistling Wings, Inc. Ag					
Data Transfor		Alt I							NOEL	LOEL	TOEL	TU	PMSD
Untransformed	t	C > -							159	>159	n/a	3485000	2.28%
Wilcoxon/Bor	nferro	ni Adj Test											
Control	vs	Conc-mg ai/k	Test	Stat C	Critical	Ties	DF	P-Type	P-Value	Decisio	n(α:5%)		
Negative Contr	rol	9.82 32.9 100 159	-0.594 0.336 -0.981 1.281	l 1 2 1	.645 .645 .645 .645	1 1 1 1	30 27 28 25	Asymp Asymp Asymp Asymp	1.0000 1.0000 1.0000 0.4002	Non-Sig Non-Sig	nificant Effect Inificant Effect Inificant Effect Inificant Effect		
ANOVA Table	ſ												
Source		Sum Squares	Mean	Squar	e	DF		F Stat	P-Value	Decisio	n(α:5%)		
Between Error		0.0059121 0.0408899	0.001 0.000	0.00285		4 65		2.35	0.0634	Non-Sig	nificant Effect	\$ 2:	
Total		0.046802				69							

ANOVA Assumptions Tests

Attribute	Test	Test Stat	Critical	P-Value	Decision(α:1%)
Variance	Bartlett Equality of Variance Test	19.76	13.28	5.6E-04	Unequal Variances
Distribution	Shapiro-Wilk W Normality Test	0.8034	0.9526	3.0E-08	Non-Normal Distribution

07 Live Embryos per VE Summary

Conc-mg ai/kg	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	N	16	0.9898	0.9804	0.9992	1.0000	0.9412	1.0000	0.0044	1.79%	0.00%
9.82		16	0.9887	0.9744	1.0000	1.0000	0.9130	1.0000	0.0067	2.70%	0.11%
32.9		13	0.9876	0.9757	0.9996	1.0000	0.9333	1.0000	0.0055	2.00%	0.22%
100		14	0.9949	0.9873	1.0000	1.0000	0.9615	1.0000	0.0035	1.31%	-0.51%
159		11	0.9659	0.9370	0.9948	1.0000	0.8889	1.0000	0.0130	4.46%	2.41%

Report Date: Test Code/ID: 13 Apr-20 20:12 (p 14 of 30) 035505 50308302 / 10-1201-6135

OCSPP 850.23	300 C	hronic Avia	n Rep	roduction									Wildlife	International
Analysis ID: Analyzed:	G8985 85	249-5639 pr-20 20:04		Endpoint: Analysis:		Live Embryo nparametric	os per VE -Control vs O	rd. Treatme		ETIS V		: CETISV 1	1.9.6	
Batch ID:	03-8	385-5999		Test Type:	Chr	onic Avian	Repro		Д	nalyst:				
Start Date:	14 A	vpr-07		Protocol:	OC	SPP 850.23	300 Chronic E	Bird	E	iluent:				
Ending Date:	11 C	oct-07		Species:	Ana	as Platyrhyn	chos		Е	rine:				
Test Length:	1800	d Oh		Taxon:					S	ource:	WI	histling Wing	js, Inc.	Age: 27w
Data Transfor	m		Alt F	łур					NOEL	LC	EL	TOEL	TU	
Untransformed			C > 1						159	>1	59	n/a		
Jonckheere-T	erps	tra Step-Dov	vn Tes	ot .										
Control	vs	Conc-mg	ai/k	Test	Stat	Critical	Ties	P-Type	P-Valu	ie De	cisior	η(α:5%)		
Negative Contr	ol	9.82		-0.569	9	1.645	1	Asymp	0.7156	. No	n-Sigr	nificant Effec	:t	
		32.9		0.260	9	1.645	3	Asymp	0.7148	No	n-Sigr	nificant Effec	t	
		100		-0.567	4	1.645	3	Asymp	0.7148	No	n-Sigr	nificant Effec	:t	
		159		0.788	3	1.645	3	Asymp	0.2152	. No	n-Sign	nificant Effec	:t	
ANOVA Table	Š													
Source		Sum Squa	res	Mean	Squ	ıare	DF	F Stat	P-Valu	ie De	cisior	η(α:5%)		
Between		0.0059121		0.001	4780		4	2.35	0.0634	. No	n-Sigr	nificant Effec	t	
Error		0.0408899		0.000	6291		65	=%						
Total		0.046802					69	=						
ANOVA Assur	nptic	ns Tests												
Attribute		Test					Test Stat	Critical	P-Valu	ie De	cisior	n(α:1%)		

07 Live Embryos per VE Summary

Conc-mg ai/kg	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	N	16	0.9898	0.9804	0.9992	1.0000	0.9412	1.0000	0.0044	1.79%	0.00%
9.82		16	0.9887	0.9744	1.0000	1.0000	0.9130	1.0000	0.0067	2.70%	0.11%
32.9		13	0.9876	0.9757	0.9996	1.0000	0.9333	1.0000	0.0055	2.00%	0.22%
100		14	0.9949	0.9873	1.0000	1.0000	0.9615	1.0000	0.0035	1.31%	-0.51%
159		11	0.9659	0.9370	0.9948	1.0000	0.8889	1.0000	0.0130	4.46%	2.41%

19.76

0.8034

13.28

0.9526

5.6E-04

3.0E-08

Graphics

Variance

Distribution

Bartlett Equality of Variance Test

Shapiro-Wilk W Normality Test

Unequal Variances

Non-Normal Distribution

Report Date: Test Code/ID: 13 Apr-20 20:12 (p 15 of 30) 035505 50308302 / 10-1201-6135

OCSPP 850.23	300 Chronic Av	ian Repr	oduction								Wildlife	International
Analysis ID: Analyzed:	07-3290-3425 13 Apr-20 20:0		one To so man	3 Hatchlings onparametric	NATIONAL MADE IN	Comp	oarison		IS Version us Level:	: CETISv1	.9.6	
Batch ID:	03-8385-5999		Test Type: C	hronic Avian	Repro			Anal	yst:			
Start Date:	14 Apr-07		Protocol: O	CSPP 850.2	300 Chro	nic B	ird	Dilue	ent:			
Ending Date:	11 Oct-07		Species: A	nas Platyrhyr	chos			Brin	e:			
Test Length:	180d 0h		Taxon:					Soul	rce: W	histling Wing	s, Inc.	Age: 27w
Data Transfor	m	Alt H	ур					NOEL	LOEL	TOEL	TU	PM SD
Untransformed	d	C > T						159	>159	n/a		16.61%
Wilcoxon/Bor	nferroni Adj Tes	st										
Control	vs Conc-m	ng ai/k	Test Sta	t Critical	Ties	DF	P-Type	P-Value	Decisio	n(α:5%)		
Negative Contr	ol 9.82		1.168	1.645	1	30	Asymp	0.4852	Non-Sigi	nificant Effect		
	32.9		1.601	1.645	1	27	Asymp	0.2186	Non-Sigi	nificant Effect		
	100		-0.08315	1.645	1	28	Asymp	1.0000	Non-Sigi	nificant Effect		
	159		0.297	1.645	2	25	Asymp	1.0000	Non-Sigi	nificant Effect		
ANOVA Table	9											
Source	Sum Sq	uares	Mean So	Juare	DF		F Stat	P-Value	Decision	າ(α:5%)		
Between	0.093015	57	0.023253	39	4		0.9031	0.4675	Non-Sigi	nificant Effect		
Error	1.67372		0.025749	95	65							
Total	1.76673				69							

Attribute	rest	iest Stat	Critical	P-value	Decision(α:1%)
Variance	Bartlett Equality of Variance Test	13.37	13.28	0.0096	Unequal Variances
Distribution	Shapiro-Wilk W Normality Test	0.9413	0.9526	0.0026	Non-Normal Distribution

08 Hatchlings per LE Summary

Conc-mg ai/kg	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	N	16	0.8680	0.8250	0.9111	0.8681	0.6552	1.0000	0.0202	9.30%	0.00%
9.82		16	0.7726	0.6591	0.8861	0.8069	0.2381	1.0000	0.0532	27.57%	11.00%
32.9		13	0.7866	0.7069	0.8663	0.7250	0.6316	1.0000	0.0366	16.77%	9.38%
100		14	0.8406	0.7492	0.9320	0.8855	0.4545	1.0000	0.0423	18.83%	3.16%
159		11	0.8175	0.6899	0.9452	0.8182	0.5000	1.0000	0.0573	23.24%	5.82%

Report Date: Test Code/ID: 13 Apr-20 20:12 (p 16 of 30) 035505 50308302 / 10-1201-6135

OCSPP 850.23	300 Ch	ronic Avian Rep	roduction										Wildl	ife International
Analysis ID: Analyzed:	08/80 60	054-8551 or-20 20:04	Endpoint: Analysis:		atchlings poarametric	oer LE -Control vs Or	d. Treatmen		CETIS Status			CETIS\	1.9.6	
Batch ID: Start Date: Ending Date: Test Length:	03-83 14 Ap 11 Oc 180d	ot-07	Test Type: Protocol: Species: Taxon:	ocs	onic Avian SPP 850.23 Platyrhyn	300 Chronic B	iird		Analy Diluer Brine: Sourc	nt:	Whis	stling Wing	rs Inc	A ge: 27w
Data Transfor	m	Alt F	łур					NOE 159		LOEL >159		TOEL	TU	Age. 27W
	erpstr vs	a Step-Down Tes	st Test \$	Stat	Critical	Ties	P-Type	P-Va	lue	Decis	sion(o	ı:5%)		
Negative Contr	ol	9.82 32.9 100 159	159.5 1.575 0.393 0.093		n/a 1.645 1.645 1.645	2 3 6	Exact Asymp Asymp Asymp	0.462 0.462 0.462	28 28	Non-S Non-S	Signifi Signifi	cant Effect cant Effect cant Effect cant Effect	et et	
ANOVA Table	10 mg/s	Sum Squares	Mean	Saua	ıre	DF	F Stat	P-Va	lue	Decis	ion(o	r·5%)		
Between Error Total		0.0930157 1.67372 1.76673	0.023 0.025	2539		4 65 69	0.9031	0.467			•	cant Effec	et	

ANOVA Assumptions Tests

Attribute	Test	Test Stat	Critical	P-Value	Decision(α:1%)
Variance	Bartlett Equality of Variance Test	13.37	13.28	0.0096	Unequal Variances
Distribution	Shapiro-Wilk W Normality Test	0.9413	0.9526	0.0026	Non-Normal Distribution

08 Hatchlings per LE Summary

Conc-mg ai/kg	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	N	16	0.8680	0.8250	0.9111	0.8681	0.6552	1.0000	0.0202	9.30%	0.00%
9.82		16	0.7726	0.6591	0.8861	0.8069	0.2381	1.0000	0.0532	27.57%	11.00%
32.9		13	0.7866	0.7069	0.8663	0.7250	0.6316	1.0000	0.0366	16.77%	9.38%
100		14	0.8406	0.7492	0.9320	0.8855	0.4545	1.0000	0.0423	18.83%	3.16%
159		11	0.8175	0.6899	0.9452	0.8182	0.5000	1.0000	0.0573	23.24%	5.82%

Report Date: Test Code/ID: 13 Apr-20 20:13 (p 17 of 30) 035505 50308302 / 10-1201-6135

OCSPP 850.2	300 C	hronic Avian	Repro	duction									Wildlif	fe International
Analysis ID: Analyzed:	\$10.000 do	313-3205 Apr-20 20:03		Endpoint: Analysis:		4d Hatchlii parametric	State No. or		oarison	200000 00	IS Version: us Level:	CETISv	1.9.6	
Batch ID:	03-8	3385-5999	Ţ	est Type:	Chr	onic Avian	Repro		21	Anal	yst:			
Start Date:	14 A	\pr-07	F	Protocol:	008	SPP 850.23	300 Chro	nic B	ird	Dilue	ent:			
Ending Date:	11 C	Oct-07	5	Species:	Ana	s Platyrhyn	chos			Brin	e:			
Test Length:		d Oh	ī	axon:						Soul	ce: Wh	istling Wing	s, Inc.	Age: 27w
Data Transfor	rm	,	Alt Hy	р						NOEL	LOEL	TOEL	TU	PMSD
Untransformed	t	(C > T							159	>159	n/a		2.08%
Wilcoxon/Bor	nferro	oni Adj Test												
Control	vs	Conc-mg a	i/k	Test S	tat	Critical	Ties	DF	P-Type	P-Value	Decision	(α:5%)		
Negative Contr	rol	9.82		1.024		1.645	1	30	Asymp	0.6119	Non-Signi	ficant Effec		
		32.9		0.6327	7.1	1.645	1	27	Asymp	1.0000	Non-Signi	ficant Effect		
		100		0.6082	2	1.645	1	28	Asymp	1.0000	Non-Signi	ficant Effec	ĺ	
		159		-0.226		1.645	1	25	Asymp	1.0000	Non-Signi	ficant Effec		
ANOVA Table	ı,													
Source		Sum Square	es	Mean	Squa	are	DF		F Stat	P-Value	Decision	(α:5%)		
Between		0.0009102		0.0002	276		4		0.4297	0.7866	Non-Signi	ficant Effect	2	
Error		0.0344197		0.0005	295		65							

ANOVA Assumptions Tests

Attribute	Test	Test Stat	Critical	P-Value	Decision(α:1%)
Variance	Bartlett Equality of Variance Test	16.91	13.28	0.0020	Unequal Variances
Distribution	Shapiro-Wilk W Normality Test	0.6072	0.9526	2.1E-12	Non-Normal Distribution

69

09 14d Hatchlings per NH Summary

0.03533

Conc-mg ai/kg	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	N	16	0.9950	0.9871	1.0000	1.0000	0.9444	1.0000	0.0037	1.49%	0.00%
9.82		16	0.9853	0.9701	1.0000	1.0000	0.9130	1.0000	0.0071	2.89%	0.98%
32.9		13	0.9940	0.9870	1.0000	1.0000	0.9714	1.0000	0.0032	1.16%	0.10%
100		14	0.9904	0.9778	1.0000	1.0000	0.9259	1.0000	0.0058	2.19%	0.47%
159		11	0.9899	0.9674	1.0000	1.0000	0.8889	1.0000	0.0101	3.38%	0.51%

Graphics

Total

Report Date: Test Code/ID: 13 Apr-20 20:13 (p 18 of 30) 035505 50308302 / 10-1201-6135

OCSPP 850.23	300 Chr	onic Avian Rep	roduction							Wildlife	International
Analysis ID: Analyzed:	08/80 80	.4-8075 -20 20:04	Endpoint: Analysis:		chlings per NH tric-Control vs	H Ord. Treatmen	Fig. 2522-F Fig.	IS Version us Level:	: CETISv1 1	.9.6	
Batch ID:	03-838	5-5999	Test Type:	Chronic Avi	an Repro		Anal	yst:			
Start Date:	14 Apr	-07	Protocol:	OCSPP 85	0.2300 Chroni	ic Bird	Dilue	ent:			
Ending Date:	11 Oct	-07	Species:	Anas Platyr	hynchos		Brine	e:			
Test Length:	180d (Dh	Taxon:				Sour	rce: Wi	histling Wings	s, Inc.	Age: 27w
Data Transfor	m	Alt I	l yp				NOEL	LOEL	TOEL	TU	
Untransformed	l	C > -					159	>159	n/a		
Jonckheere-T	erpstra	Step-Down Tes	st								
Control	vs	Conc-mg ai/k	Test S	Stat Critica	al Ties	P-Type	P-Value	Decision	n(a:5%)		
		Conto mig and				,,,,,	· value	Decision	1(01.070)		
Negative Contr	ol	9.82	1.051	1.645	1	Asymp	0.5183		nificant Effect		
Negative Contr	1000 P		1.051 0.672		1 2	10000		Non-Sigr	· · · ·		
Negative Contr		9.82		5 1.645	*	Asymp	0.5183	Non-Sigr Non-Sigr	nificant Effect		
Negative Contr		9.82 32.9	0.672	5 1.645 5 1.645	2	Asymp Asymp	0.5183 0.5183	Non-Sigr Non-Sigr Non-Sigr	nificant Effect		
Negative Contr		9.82 32.9 100	0.672 0.530	5 1.645 5 1.645	2 2	Asymp Asymp Asymp	0.5183 0.5183 0.5183	Non-Sigr Non-Sigr Non-Sigr	nificant Effect nificant Effect nificant Effect		
ANOVA Table		9.82 32.9 100	0.6729 0.5309 -0.045	5 1.645 5 1.645	2 2	Asymp Asymp Asymp	0.5183 0.5183 0.5183	Non-Sigr Non-Sigr Non-Sigr	nificant Effect nificant Effect nificant Effect nificant Effect		
		9.82 32.9 100 159	0.6729 0.5309 -0.045	5 1.645 5 1.645 95 1.645 Square	2 2 2 2	Asymp Asymp Asymp Asymp	0.5183 0.5183 0.5183 0.5183	Non-Sigr Non-Sigr Non-Sigr Non-Sigr	nificant Effect nificant Effect nificant Effect nificant Effect		
ANOVA Table Source	.	9.82 32.9 100 159 Sum Squares	0.6729 0.5309 -0.045 M ean	5 1.645 5 1.645 95 1.645 Square	2 2 2 2 DF	Asymp Asymp Asymp Asymp	0.5183 0.5183 0.5183 0.5183 P-Value	Non-Sigr Non-Sigr Non-Sigr Non-Sigr	nificant Effect nificant Effect nificant Effect nificant Effect n(α:5%)		

09 14d Hatchlings per NH Summary

Test

Conc-mg ai/kg	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	N	16	0.9950	0.9871	1.0000	1.0000	0.9444	1.0000	0.0037	1.49%	0.00%
9.82		16	0.9853	0.9701	1.0000	1.0000	0.9130	1.0000	0.0071	2.89%	0.98%
32.9		13	0.9940	0.9870	1.0000	1.0000	0.9714	1.0000	0.0032	1.16%	0.10%
100		14	0.9904	0.9778	1.0000	1.0000	0.9259	1.0000	0.0058	2.19%	0.47%
159		11	0.9899	0.9674	1.0000	1.0000	0.8889	1.0000	0.0101	3.38%	0.51%

Test Stat

16.91

0.6072

Critical

13.28

0.9526

P-Value

0.0020

2.1E-12

Decision(α:1%)

Unequal Variances

Non-Normal Distribution

Graphics

Attribute

Variance

Distribution

Bartlett Equality of Variance Test

Shapiro-Wilk W Normality Test

Report Date: Test Code/ID: 13 Apr-20 20:13 (p 19 of 30) 035505 50308302 / 10-1201-6135

										vviiuiiie	International
		Endpoint: Analysis:			reatn	nents	200205 52		8000	1.9.6	
14 Ap 11 Oc	or-07 ct-07	Test Type: Protocol: Species: Taxon:	OCSPP 850.2	2300 Chro	nic B	iird	Dilue Brine	ent: e:	Vhistling Wing	s, Inc.	Age : 27w
m	Alt I	Нур					NOEL	LOEL	TOEL	TU	PMSD
	C > .	Г					159	>159	n/a	AC 1917411	5.71%
ple Co	mparison Test										
vs	Conc-mg ai/k	Test \$	Stat Critical	MSD	DF	P-Type	P-Value	Decisio	on(α:5%)		
ol	9.82 32.9 100 159			0.020 0.021 0.020 0.022	30 28 30 26	CDF CDF CDF CDF	0.8644 0.9037 0.2846 0.1302	Non-Si Non-Si	gnificant Effec gnificant Effec	t t	
	Sum Squares	Mean	Square	DF		F Stat	P-Value	Decisio	on(α:5%)		
	0.0044292 0.0457234			4 69		1.671	0.1666	Non-Si	gnificant Effec	t	
	13 Ap 03-83 14 Ap 11 Oc 180d m	C > Tole Comparison Test vs	13 Apr-20 20:00 Analysis: 03-8385-5999 Test Type: 14 Apr-07 Protocol: 11 Oct-07 Species: 180d 0h Taxon: m Alt Hyp	13 Apr-20 20:00	13 Apr-20 20:00	13 Apr-20 20:00	13 Apr-20 20:00	13 Apr-20 20:00 Analysis: Parametric-Control vs Treatments State 03-8385-5999 Test Type: Chronic Avian Repro Anal 14 Apr-07 Protocol: OCSPP 850.2300 Chronic Bird Dilue 11 Oct-07 Species: Anas Platyrhynchos Brine 180d 0h Taxon: Sour m Alt Hyp NOEL C > T 159 ole Comparison Test VS Conc-mg ai/k Test Stat Critical MSD DF P-Type P-Value ol 9.82 -0.1923 2.208 0.020 30 CDF 0.8644 32.9 -0.363 2.208 0.021 28 CDF 0.9037 100 1.236 2.208 0.020 30 CDF 0.2846 159 1.731 2.208 0.022 26 CDF 0.1302 Sum Squares Mean Square DF F Stat P-Value 0.00457234 0.0006627 69	13 Apr-20 20:00	13 Apr-20 20:00 Analysis: Parametric-Control vs Treatments Status Level: 1	13 Apr-20 20:00 Analysis: Parametric-Control vs Treatments Status Level: 1

ANOVA Assumptions Tests

Attribute	Test	Test Stat	Critical	P-Value	Decision(α:1%)
Variance	Bartlett Equality of Variance Test	2.723	13.28	0.6052	Equal Variances
Distribution	Shapiro-Wilk W Normality Test	0.9814	0.9549	0.3459	Normal Distribution

10 Eggshell Thickness Summary

Conc-mg ai/kg	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	N	16	0.3804	0.3669	0.394	0.3765	0.34	0.448	0.006365	6.69%	0.00%
9.82		16	0.3822	0.3671	0.3973	0.383	0.326	0.435	0.007071	7.40%	-0.46%
32.9		14	0.3839	0.3724	0.3953	0.385	0.35	0.424	0.005317	5.18%	-0.90%
100		16	0.3692	0.3566	0.3818	0.3645	0.326	0.424	0.005896	6.39%	2.96%
159		12	0.3634	0.3438	0.3831	0.3665	0.312	0.413	0.008923	8.51%	4.47%

Report Date: Test Code/ID: 13 Apr-20 20:13 (p 20 of 30) 035505 50308302 / 10-1201-6135

OCSPP 850.23	300 Chr	onic Avian	Reprod	uction									Wildlife	International
Analysis ID: Analyzed:	15-985 13 Apr-	3-1600 -20 20:04		dpoint: alysis:		Eggshell Th ametric-Co		rd.Tı	eatments	9.539-00-09	IS Version us Level:	: CETISV 1	1.9.6	
Batch ID:	03-838	5-5999	Te	st Type:	Chr	onic Avian	Repro			Anal	yst:			
Start Date:	14 Apr-	-07	Pro	otocol:	OC.	SPP 850.23	300 Chro	nic B	ird	Dilu	ent:			
Ending Date:	11 Oct-	-07	Sp	ecies:	Ana	s Platyrhyn	chos			Brin	e:			
Test Length:	180d 0)h	Ta	xon:						Soul	rce: Wi	nistling Wing	ıs, Inc.	Age: 27w
Data Transfor	m	Alt Hyp C > T						NOEL	LOEL	TOEL	TU	PM SD		
Untransformed	l	(C > T							159	>159	n/a		4.56%
Williams Mult	iple Cor	nparison T	est											
Control	VS	Conc-mg ai	i/k	Test :	Stat	Critical	MSD	DF	P-Type	P-Value	Decision	η(α:5%)		
Negative Contr	ol	9.82		-0.192	23	1.668	0.015	30	CDF	>0.05	Non-Sigr	nificant Effec	t	
		32.9		-0.268	35	1.738	0.016	28	CDF	>0.05	Non-Sigr	nificant Effec	t	
		100		1.236		1.766	0.016	30	CDF	>0.05	Non-Sigr	nificant Effec	t	
		159		1.731		1.764	0.017	26	CDF	>0.05	Non-Sigr	nificant Effec	t	
ANOVA Table	j													
Source	S	Sum Square	s	Mean	Squ	are	DF		F Stat	P-Value	Decision	η(α:5%)		
Between	C	.0044292		0.001	1073		4		1.671	0.1666	Non-Sigr	nificant Effec	t	
Error	0	0.0457234		0.000	6627		69		2					
Total	O	0.0501526					73		.					
ANOVA Assui	mptions	Tests									_			
Attribute	J	est	-			Test S	tat	Critical	P-Value	Decision	n(α:1%)			

2.723

0.9814

95% UCL

0.394

0.3973

0.3953

0.3818

0.3831

95% LCL

0.3669

0.3671

0.3724

0.3566

0.3438

13.28

0.9549

Median

0.3765

0.383

0.385

0.3645

0.3665

0.6052

0.3459

Min

0.34

0.326

0.35

0.326

0.312

159 Graphics

0

9.82

32.9

100

Variance

Distribution

Conc-mg ai/kg

10 Eggshell Thickness Summary

Code

Bartlett Equality of Variance Test

Shapiro-Wilk W Normality Test

Count

16

16

14

16

12

Mean

0.3804

0.3822

0.3839

0.3692

0.3634

Equal Variances

Max

0.448

0.435

0.424

0.424

0.413

Normal Distribution

Std Err

0.006365

0.007071

0.005317

0.005896

0.008923

CV%

6.69%

7.40%

5.18%

6.39%

8.51%

%Effect

0.00%

-0.46%

-0.90%

2.96%

4.47%

Report Date: Test Code/ID: 13 Apr-20 20:13 (p 21 of 30) 035505 50308302 / 10-1201-6135

OCSPP 850.2300	Chronic Avian Re	production								Wildlife	International
ACCU 10 000	3-0312-0676 3 Apr-20 20:00		I Hatchling Warametric-Co	6 FB ACE	reatn	nents	252292 22	IS Version us Level:	: CETISV 1	1.9.6	
THE RESERVE OF THE PARTY OF THE	3-8385-5999	Test Type: Cl				20.00	Anal	• (100,000			
	4 Apr-07	700 00 00 00 00	CSPP 850.2		nic B	sird	Dilue	100.00			
Ending Date: 1°	1 Oct-07	Species: A	nas Platyrhyn	chos			Brine	e:			
Test Length: 18	30d 0h	Taxon:					Sour	rce: Wh	nistling Wing	ıs, Inc.	Age : 27v
Data Transform	Alt	Нур					NOEL	LOEL	TOEL	TU	PM SD
Untransformed	C >	Т					159	>159	n/a		6.94%
Dunnett Multiple	Comparison Test										
Control vs	Conc-mg ai/k	Test Sta	t Critical	MSD	DF	P-Type	P-Value	Decision	ι(α:5%)		
Negative Control	9.82	0.5646	2.216	2.208	30	CDF	0.5883	Non-Sign	ificant Effec	t	
	32.9	-1.078	2.216	2.331	27	CDF	0.9853	Non-Sign	ificant Effec	t	
	100	0.03463	2.216	2.285	28	CDF	0.8030	Non-Sign	ificant Effec	t	
	159	1.38	2.216	2.446	25	CDF	0.2353	Non-Sign	ificant Effec	t	
ANOVA Table											
Source	Sum Squares	Mean So	Juare	DF		F Stat	P-Value	Decision	ι(α:5%)		
Between	45.4323	11.3581		4		1.431	0.2339	Non-Sign	ificant Effec	t	
Error	516.053	7.93928		65							
Total	561.486			69		-					
ANOVA Assump	tions Tests										
Attribute	Test			Test S	tat	Critical	P-Value	Decision	ι(α:1%)		
Variance	Bartlett Equality	of Variance Test		11.17		13.28	0.0247	Equal Va	riances		
Distribution	tribution Shapiro-Wilk W Normality Test			0.9814		0.9526	0.3839	Normal D	Distribution		

95% UCL

36.25

35.8

38.95

36.8

35.65

Median

35

35

36

35

33

Min

33

31

28

30

29

Max

40

38

44

40

40

Std Err

0.4699

0.5222

0.7351

0.8644

1.18

CV%

5.33%

6.02%

11.69%

7.81%

8.50%

%Effect

0.00%

1.60%

-3.22%

0.10%

4.32%

Graphics

0

9.82

32.9

100

159

Conc-mg ai/kg

11 Hatchling Weight Summary

Code

Count

16

16

13

14

11

Mean

35.25

34.69

36.38

35.21

33.73

95% LCL

34.25

33.57

33.81

33.63

31.8

Report Date: Test Code/ID: 13 Apr-20 20:13 (p 22 of 30) 035505 50308302 / 10-1201-6135

OCSPP 850.23	300 C	hronic Avian Rep	roduction									Wildli	fe International
Analysis ID: Analyzed:	08/80 8	'659-6113 Apr-20 20:04	Endpoint: Analysis:		atchling W metric-Co	a 50 a	rd.Tr	eatments		IS Versio us Level:	n: CETIS	v1.9.6	
Batch ID: Start Date: Ending Date: Test Length:	14 A	3385-5999 hpr-07 Oct-07 d Oh	Test Type: Protocol: Species: Taxon:	ocs	nic Avian PP 850.23 Platyrhyn	300 Chror	nic B	ird	Anal Dilue Brin Soui	ent: e:	√histling Win	gs, Inc.	Age : 27w
Data Transfor		Alt I	Нур						NOEL	LOEL	TOEL	TU	PMSD
Untransformed	t	C > .							159	>159	n/a	2002000	5.52%
Williams Mult	iple (Comparison Test											
Control	٧s	Conc-mg ai/k	Test \$	Stat	Critical	MSD	DF	P-Type	P-Value	Decisio	n(α:5%)		
Negative Contr	rol	9.82 32.9 100 159	0.564 -0.188 0.034 1.38	5 33	1.669 1.738 1.763 1.763	1.663 1.829 1.817 1.946	30 27 28 25	CDF CDF CDF CDF	>0.05 >0.05 >0.05 >0.05 >0.05	Non-Sig Non-Sig	gnificant Effe gnificant Effe gnificant Effe gnificant Effe	ct ct	
ANOVA Table	ĺ												
Source		Sum Squares	Mean	Squa	re	DF		F Stat	P-Value	Decisio	n(α:5%)		
Between Error		45.4323 516.053	11.35 7.939	7853-10		4 65		1.431	0.2339	Non-Sig	gnificant Effe	ct	
Total		561.486				69							

ANOVA Assumptions Tests

Attribute	Test	Test Stat	Critical	P-Value	Decision(α:1%)
Variance	Bartlett Equality of Variance Test	11.17	13.28	0.0247	Equal Variances
Distribution	Shapiro-Wilk W Normality Test	0.9814	0.9526	0.3839	Normal Distribution

11 Hatchling Weight Summary

Conc-mg ai/kg	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	N	16	35.25	34.25	36.25	35	33	40	0.4699	5.33%	0.00%
9.82		16	34.69	33.57	35.8	35	31	38	0.5222	6.02%	1.60%
32.9		13	36.38	33.81	38.95	36	28	44	1.18	11.69%	-3.22%
100		14	35.21	33.63	36.8	35	30	40	0.7351	7.81%	0.10%
159		11	33.73	31.8	35.65	33	29	40	0.8644	8.50%	4.32%

Report Date: Test Code/ID: 13 Apr-20 20:13 (p 23 of 30) 035505 50308302 / 10-1201-6135

OCSPP 850.23	300 Ch	ronic Avian I	Reprodu	ction								Wildlife	International
Analysis ID: Analyzed:		37-3075 r-20 20:00		\$	2 14d Survivo	co as \$25000	eatn	nents	9.537-05 - 09	IS Version us Level:	ı: CETISv´ 1	.9.6	
Batch ID:	03-83	85-5999	Tes	t Type: C	hronic Avian	Repro			Anal	yst:			
Start Date:	14 Ap	r-07	Prof	tocol: C	CSPP 850.2	300 Chro	nic B	ird	Dilue	ent:			
Ending Date:	11 Oc	:t-07	Spe	cies: A	nas Platyrhyn	chos			Brin	e:			
Test Length:	180d	0h	Tax	on:					Soul	rce: W	histling Wing	s, Inc.	Age: 27w
Data Transfor	m	Δ	Alt Hyp						NOEL	LOEL	TOEL	TU	PMSD
Untransformed	ĺ		C > T						159	>159	n/a		7.47%
Dunnett Multi	ple Co	mparison Te	st										
Control	VS	Conc-mg ai	/k	Test Sta	at Critical	MSD	DF	P-Type	P-Value	Decisio	η(α:5%)		
Negative Contr	ol	9.82		0.6086	2.216	19.8	30	CDF	0.5680	Non-Sigi	nificant Effect		
		32.9		0.05146	2.216	20.91	27	CDF	0.7973	Non-Sigi	nificant Effect		
		100		-0.3176	2.216	20.49	28	CDF	0.8985	Non-Sigi	nificant Effect		
		159		0.3415	2.216	21.93	25	CDF	0.6869	Non-Sigi	nificant Effect		
ANOVA Table	3												
Source		Sum Square	S	Mean S	quare	DF		F Stat	P-Value	Decision	n(α:5%)		
Between		608.539		152.135		4		0.2382	0.9158	Non-Sigi	nificant Effect		
Error		41513.7		638.673		65		<u> </u>					
Total	,	42122.3				69		-					

12 14d Survivor Weight Summary

Test

Conc-mg ai/kg	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	N	16	293.6	280.2	306.9	298	245	334	6.26	8.53%	0.00%
9.82		16	288.1	273.6	302.6	288.5	245	328	6.81	9.45%	1.85%
32.9		13	293.1	276.8	309.4	299	241	337	7.491	9.22%	0.17%
100		14	296.5	281.5	311.5	299	235	339	6.946	8.77%	-1.00%
159		11	290.2	277.7	302.7	295	257	319	5.597	6.40%	1.15%

Test Stat

1.82

0.9808

Critical

13.28

0.9526

P-Value

0.7688

0.3588

Decision(a:1%)

Equal Variances

Normal Distribution

Graphics

Attribute

Variance

Distribution

Bartlett Equality of Variance Test

Shapiro-Wilk W Normality Test

Report Date: Test Code/ID: 13 Apr-20 20:13 (p 24 of 30) 035505 50308302 / 10-1201-6135

OCSPP 850.2	300 Chro	nic Avian R	eproduc	tion								Wildlife	International
Analysis ID: Analyzed:	02-5684 13 Apr-2	-2714 20 20:04			14d Survivo rametric-Co	es es and and	rd.Tı	eatments	9,522,05 (2)	S Version us Level:	: CETISv1 1	.9.6	
Batch ID:	03-8385	-5999	Test	Type: Ch	ronic Avian	Repro			Anal	yst:			
Start Date:	14 Apr-(07	Prote	ocol: O	CSPP 850.23	300 Chro	nic B	ird	Dilue	ent:			
Ending Date:	11 Oct-0	07	Spec	cies: An	as Platyrhyn	chos			Brine	e:			
Test Length:	180d Oh	1	Taxo	on:					Sour	ce: Wi	histling Wings	s, Inc.	Age: 27v
Data Transfoi	rm	Al	t Hyp						NOEL	LOEL	TOEL	TU	PMSD
Untransformed	d	С	> T						159	>159	n/a		5.94%
Williams Mult	tiple Com	parison Te	st										
Control	vs C	onc-mg ai/	k	Test Stat	Critical	MSD	DF	P-Type	P-Value	Decision	η(α:5%)		
Negative Conti	rol 9	.82		0.6086	1.669	14.91	30	CDF	>0.05	Non-Sigr	nificant Effect		
	3	2.9		0.341	1.738	16.4	27	CDF	>0.05	Non-Sign	nificant Effect		
	1	00		0.1312	1.763	16.3	28	CDF	>0.05	Non-Sign	nificant Effect		
	1	59		0.3415	1.763	17.45	25	CDF	>0.05	Non-Sigr	nificant Effect		
NAMES OF TAXABLE PARTY.	ia de la composición												
ANOVA Table	7												
		um Squares	¥.	Mean Sq	uare	DF		F Stat	P-Value	Decision	ι(α:5%)		
ANOVA Table Source Between	Sı	um Squares 08.539	-	Mean Sq 152.135	uare	DF 4		F Stat 0.2382	P-Value 0.9158		n(α:5%) nificant Effect		
Source	S i	129	¥		uare								

:**:**

Attribute	Test	Test Stat	Critical	P-Value	Decision(α:1%)
Variance	Bartlett Equality of Variance Test	1.82	13.28	0.7688	Equal Variances
Distribution	Shapiro-Wilk W Normality Test	0.9808	0.9526	0.3588	Normal Distribution

12 14d Survivor Weight Summary

Conc-mg ai/kg	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	N	16	293.6	280.2	306.9	298	245	334	6.26	8.53%	0.00%
9.82		16	288.1	273.6	302.6	288.5	245	328	6.81	9.45%	1.85%
32.9		13	293.1	276.8	309.4	299	241	337	7.491	9.22%	0.17%
100		14	296.5	281.5	311.5	299	235	339	6.946	8.77%	-1.00%
159		11	290.2	277.7	302.7	295	257	319	5.597	6.40%	1.15%

Report Date: Test Code/ID: 13 Apr-20 20:13 (p 25 of 30) 035505 50308302 / 10-1201-6135

									Test	Code/ID	: 035505 5	0308302 / 1	0-1201-613
OCSPP 850.23	00 Chronic	Avian Rep	roduction									Wildlife In	iternational
2000 B. C. C.	06-9807-036		Endpoint:			Consumption (Adult)				IS Versio		.9.6	
Analyzed:	13 Apr-20 20	0:00	Analysis:	Parametr	ic-Control v	Tre	atm	nents	Stat	us Level:	1		
Batch ID:	03-8385-599	99	Test Type:	Chronic A	Avian Repro				Anal	lyst:			
Start Date:	14 Apr-07		Protocol:	OCSPP 8	350.2300 C	nroni	с В	ird	Dilu	ent:			
Ending Date:	11 Oct-07		Species:	Anas Pla	tyrhynchos				Brin	e:			
Test Length:	180d Oh		Taxon:						Sou	rce: \	Whistling Wing	s, Inc.	Age: 27\
Data Transfori	n	Alt I	l yp						NOEL	LOEL	TOEL	TU	PM SD
Untransformed		C >	Γ						159	>159	n/a		15.44%
Dunnett Multip	ole Compari	son Test											
Control	vs Cond	-mg ai/k	Test	Stat Crit	ical MS	D	DF	P-Type	P-Value	Decision	on(α:5%)		
Negative Contro	ol 9.82		-1.361	1 2.19	7 25.	23	30	CDF	0.9924	Non-Si	gnificant Effect		
	32.9		-0.304	18 2.19	7 25.	23	30	CDF	0.8847	Non-Si	gnificant Effect		
	100		-0.217	77 2.19	7 25.	23	30	CDF	0.8636	Non-Si	gnificant Effect		
	159		-0.664	1 2.19	7 25.	23	30	CDF	0.9474	Non-Si	gnificant Effect		
ANOVA Table													
Source	Sum S	Squares	Mean	Square	DF			F Stat	P-Value	Decision	on(α:5%)		
Between	2394.7	7	598.6	75	4			0.5675	0.6870	Non-Si	gnificant Effect		
Error	79125	.7	1055.	01	75			2					
Total	81520	.4			79								
ANOVA Assun	nptions Test	s											
Attribute	Test				Tes	t St	at	Critical	P-Value	Decision	on(α:1%)		
Variance	Bartlet	t Equality o	of Variance Te	est	1.1	8		13.28	0.8814	Equal \	√ariances		
Distribution	Shapii	Shapiro-Wilk W Normality Tes		t	0.9	713		0.9579	0.0684	Normal	Distribution		
13 Mean Food	Consumpti	on (Adult)	Summary										
Conc-mg ai/kg	j Code	Cou	nt Mean	95%	LCL 95%	6 UC	:L	Median	Min	Max	Std Err	CV%	%Effect
0	N	16	163.4	144	.6 182	2.3		151.5	112	238	8.844	21.65%	0.00%
9.82		16	179.1	162	.3 195	5.8		176	141	241	7.847	17.53%	-9.56%
32.9		16	166.9	148	.7 185	5.1		165.5	109	244	8.543	20.47%	-2.14%
100		16	165.9	151	.4 180).5		166.5	120	214	6.809	16.41%	-1.53%

Graphics

159

16

171.1

153.2

189

174

112

254

8.399

19.64%

-4.67%

Report Date: Test Code/ID: 13 Apr-20 20:13 (p 26 of 30) 035505 50308302 / 10-1201-6135

OCSPP 850.23	300 Chronic Avi	an Reproduction								Wildlife	International
Analysis ID: Analyzed:	13-8240-1353 13 Apr-20 20:04	Endpoint: Analysis:		Food Consump ric-Control vs O		20 at 15 at 15		IS Version us Level:	: CETISV	1.9.6	
Batch ID:	03-8385-5999	Test Type	: Chronic	Avian Repro			Anal	yst:			
Start Date:	14 Apr-07	Protocol:	OCSPP	850.2300 Chro	nic B	ird	Dilue	ent:			
Ending Date:	11 Oct-07	Species:	Anas Pla	tyrhynchos			Brine	e:			
Test Length:	180d Oh	Taxon:					Sour	ce: Wh	nistling Wing	s, Inc.	Age: 27w
Data Transfor	rm	Alt Hyp					NOEL	LOEL	TOEL	TU	PMSD
Untransformed	t	C > T					159	>159	n/a		12.47%
Williams Mult	tiple Comparisor	n Test									
Control	vs Conc-m	g ai/k Tes	Stat Cri	tical MSD	DF	P-Type	P-Value	Decision	n(α:5%)		
Negative Contr	rol 9.82	-1.3	31 1.6	36 19.13	30	CDF	>0.05	Non-Sign	nificant Effect		
	32.9	-0.3	048 1.7	4 19.98	30	CDF	>0.05	Non-Sign	nificant Effect		
	100	-0.2	177 1.7	34 20.25	30	CDF	>0.05	Non-Sign	nificant Effect		
	159	-0.3	955 1.7	75 20.38	30	CDF	>0.05	Non-Sign	nificant Effect		
ANOVA Table	Ĺ										
Source	Sum Squ	ares Mea	n Square	DF		F Stat	P-Value	Decision	ι(α:5%)		
Between	2394.7	598.	675	4		0.5675	0.6870	Non-Sign	nificant Effect	ž	
Error	79125.7	105	5.01	75							
Total	81520.4			79		.					
ANOVA Assur	mptions Tests	_									
Attribute	Test			Test S	tat	Critical	P-Value	Decision	n(α:1%)		

13 Mean Food Consumption (Adult) Summary

Conc-mg ai/kg	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	N	16	163.4	144.6	182.3	151.5	112	238	8.844	21.65%	0.00%
9.82		16	179.1	162.3	195.8	176	141	241	7.847	17.53%	-9.56%
32.9		16	166.9	148.7	185.1	165.5	109	244	8.543	20.47%	-2.14%
100		16	165.9	151.4	180.5	166.5	120	214	6.809	16.41%	-1.53%
159		16	171.1	153.2	189	174	112	254	8.399	19.64%	-4.67%

1.18

0.9713

13.28

0.9579

0.8814

0.0684

Graphics

Variance

Distribution

Bartlett Equality of Variance Test

Shapiro-Wilk W Normality Test

Equal Variances

Normal Distribution

Report Date:

13 Apr-20 20:13 (p 27 of 30) 035505 50308302 / 10-1201-6135

		83							Test	Code/ID:	035505 5	0308302 / 10)-1201-6135
OCSPP 850.23	300 C	hronic Avian Re	production									Wildlife Int	ernational
Analysis ID:		817-3040	Endpoint:		eight Gain				CET	.9.6			
Analyzed:	13 A	pr-20 20:00	Analysis:	Parar	metric-Con	trol vs Ti	reatn	nents	Stat	us Level:	1		
Batch ID:	03-8	385-5999	Test Type:	Chro	nic Avian R	Repro Analyst:							
Start Date:	14 A	pr-07	Protocol:	ocs	PP 850.23	00 Chro	nic B	ird	Dilu	ent:			
Ending Date:	11 0	ct-07	Species:	Anas	Platyrhyno	chos			Brin	e:			
Test Length:	180c	I 0h	Taxon:						Sou	rce: W	histling Wings	s, Inc.	Age: 27w
Data Transfor	m	Alt	Нур						NOEL	LOEL	TOEL	TU	PM SD
Untransformed		C >	Т						159	>159	n/a		91.31%
Dunnett Multi	ple C	omparison Test											
Control	vs	Conc-mg ai/k	Test	Stat	Critical	MSD	DF	P-Type	P-Value	Decisio	n(α:5%)		
Negative Contr	ol	9.82	1.215		2.203	67.54	30	CDF	0.2898	Non-Sig	nificant Effect		
		32.9	1.07		2.203	68.65	29	CDF	0.3485		nificant Effect		
		100	1.781		2.203	67.54	30	CDF	0.1175	Non-Sig	nificant Effect		
		159	1.964		2.203	69.91	28	CDF	0.0826	Non-Sig	nificant Effect		
ANOVA Table													
Source		Sum Squares	Mear	Squa	re	DF		F Stat	P-Value	Decisio	n(α:5%)		
Between		36068.8	9017.	19		4		1.199	0.3189	Non-Sig	nificant Effect		
Error		541609	7522.	35		72		15					
Total		577678				76		.					
ANOVA Assur	nptio	ns Tests											
Attribute		Test				Test S	tat	Critical	P-Value	Decisio	n(α:1%)		
Variance		Bartlett Equality	of Variance T	est		7.72		13.28	0.1024	Equal Va	ariances		
Distribution		Shapiro-Wilk W	Normality Tes	it		0.9909	ĺ	0.9564	0.8636	Normal	Distribution		
14 Weight Gai	in M A	LE adult Summa	ary										
Conc-mg ai/kg	g	Code Cou	unt Mear	6	95% LCL	95% U	CL	Median	Min	Max	Std Err	CV%	%Effect
0		N 16	76.56		45.26	107.9		71	-23	181	14.69	76.74%	0.00%
9.82		16	39.31		-19.61	98.23		48.5	-171	222	27.64	281.28%	48.65%
32.9		15	43.2		2.625	83.77		80	-69	149	18.92	169.60%	43.58%
100		16	21.94		-18.73	62.61		10	-86	206	19.08	347.93%	71.35%
159		14	14.21		-46.53	74.96		-10	-157	180	28.12	740.13%	81.43%

Report Date: Test Code/ID: 13 Apr-20 20:13 (p 28 of 30) 035505 50308302 / 10-1201-6135

								Test	Code/ID) : 035505 5	0308302 / 1	0-1201-613
OCSPP 850.23	300 Chro	onic Avian Re	oroduction								Wildlife In	ternationa
Analysis ID:	10-625	7-3751	Endpoint:	14 Weight G	ain MALE a	adult		CET	IS Versio	on: CETISv1	.9.6	
Analyzed:	13 Apr-	20 20:04	Analysis:	Parametric-C	ontrol vs C	rd.Tı	reatments	Stati	us Level:	: 1		
Batch ID:	03-838	5-5999	Test Type:	Chronic Avia	Repro			Anal	yst:			
Start Date:	14 Apr-	07	Protocol:	OCSPP 850.	2300 Chro	nic B	ird	Dilue	ent:			
Ending Date:	11 Oct-	07	Species:	Anas Platyrhy	nchos			Brin	e:			
Test Length:	180d 0	h	Taxon:					Soul	rce: \	Whistling Wing	s, Inc.	Age: 27
Data Transfor	m	Alt	Нур					NOEL	LOEL	TOEL	TU	PM SD
Untransformed		C >	Ţ					32.9	100	57.36		73.35%
Williams Mult	iple Cor	nparison Test										
Control	vs (Conc-mg ai/k	Test	Stat Critical	MSD	DF	P-Type	P-Value	Decisi	on(α:5%)		
Negative Contr	ol :	9.82	1.215	1.667	51.11	30	CDF	>0.05	Non-Si	ignificant Effect		
	6	32.9	1.135	1.739	54.21	29	CDF	>0.05	Non-Si	ignificant Effect		
	0	100*	1.781	1.765	54.11	30	CDF	< 0.05	Signific	cant Effect		
		159*	1.964	1.769	56.16	28	CDF	<0.05	Signific	cant Effect		
ANOVA Table												
Source	s	um Squares	Mean	Square	DF		F Stat	P-Value	Decisi	on(α:5%)		
Between	3	6068.8	9017.	19	4		1.199	0.3189	Non-Si	ignificant Effect		
Error	5	41609	7522.	35	72		olg.					
Total	5	77678			76							
ANOVA Assur	nptions	Tests										
Attribute	T	est			Test S	tat	Critical	P-Value	Decisi	on(α:1%)		
Variance	В	Bartlett Equality	of Variance Te	est	7.72		13.28	0.1024	Equal \	Variances		
Distribution	S	Shapiro-Wilk W	Normality Tes	t	0.9909)	0.9564	0.8636	Norma	l Distribution		
14 Weight Gai	in MALE	adult Summa	ary									
Conc-mg ai/kg	g C	ode Cou	ınt Mean	95% LC	L 95% U	CL	Median	Min	Max	Std Err	CV%	%Effect
0	V	16	76.56	45.26	107.9		71	-23	181	14.69	76.74%	0.00%
9.82		16	39.31	-19.61	98.23		48.5	-171	222	27.64	281.28%	48.65%
32.9		15	43.2	2.625	83.77		80	-69	149	18.92	169.60%	43.58%
32.3					00.04		40	0.0	200	19.08	347.93%	71.35%
100		16	21.94	-18.73	62.61		10	-86	206	19.00	347.3370	11.5570

Report Date: Test Code/ID: 13 Apr-20 20:13 (p 29 of 30) 035505 50308302 / 10-1201-6135

									1031	Coucilb.	0000000	00000027 1	3 1201 0130
OCSPP 850.23	300 C	Chronic Avian Re	production									Wildlife Int	ernational
Analysis ID:	15-1	1952-8278	Endpoint:		/eight Gain				CET	IS Version	: CETISv1		
Analyzed:	13 <i>F</i>	Apr-20 20:00	Analysis:	Para	metric-Con	trol vs Ti	reatm	nents	Statu	us Level:	1		
Batch ID:	03-8	3385-5999	Test Type:	Chro	nic Avian F	Repro			Anal	yst:			
Start Date:	14 /	\pr-07	Protocol:	ocs	PP 850.23	00 Chro	nic B	ird	Dilue	ent:			
Ending Date:	11 (Oct-07	Species:	Anas	Platyrhynd	chos			Brine	e:			
Test Length:	180	d 0h	Taxon:						Sour	rce: W	histling Wing	s, Inc.	Age: 27w
Data Transfor	m	Alt	Нур						NOEL	LOEL	TOEL	TU	PM SD
Untransformed		C>	• T						100	159	126.1		83.44%
Dunnett Multip	ple C	Comparison Test											
Control	VS	Conc-mg ai/k	Test	Stat	Critical	MSD	DF	P-Type	P-Value	Decision	η(α:5%)		
Negative Contr	ol	9.82	0.37		2.203	90.79	30	CDF	0.6633	Non-Sigr	nificant Effect		
		32.9	2.191		2.203	92.29	29	CDF	0.0512	Non-Sign	nificant Effect		
		100	2.085	i	2.203	90.79	30	CDF	0.0644	Non-Sign	nificant Effect		
		159*	3.435	i	2.203	93.97	28	CDF	0.0018	Significa	nt Effect		
ANOVA Table													
Source		Sum Squares	Mear	Squa	re	DF		F Stat	P-Value	Decision	η(α:5%)		
Between		218098	5452	4.6		4		4.011	0.0054	Significa	nt Effect		
Error		978656	1359:	2.4		72		<u> </u>					
Total		1196750				76							
ANOVA Assur	nptic	ons Tests											
Attribute		Test				Test S	tat	Critical	P-Value	Decision	η(α:1%)		
Variance		Bartlett Equality	of Variance T	est		3.305		13.28	0.5081	Equal Va	riances		
Distribution		Shapiro-Wilk W	/ Normality Tes	st		0.9868		0.9564	0.6095	Normal [Distribution		
15 Weight Gai	in FE	MALE adult Sur	nmary										
Conc-mg ai/kg	g	Code Co	unt Mear	1	95% LCL	95% U	CL	Median	Min	Max	Std Err	CV%	%Effect
0		N 16	112.6	3	52.38	172.9		115	-41	281	28.26	100.38%	0.00%
1000 processor virious		920000	SOURCE PRODUCTOR					2000 (1940) (50	1755 A 100 C 5 W I	\$255 Ch (1455 Ch)	DATE OF THE REAL PROPERTY.		2023 T 2020 O V 2020 C V 2020

Graphics

9.82

32.9

100

159

16

15

16

14

97.38

20.8

26.69

-33.93

24.5

-50.72

-31.37

-83.23

170.2

92.32

84.75

15.37

106

46

-13

-24.5

-157

-245

-143

-145

398

240

298

148

34.19

33.35

27.24

22.82

140.45%

620.94%

408.28%

13.54%

81.53%

76.30%

-251.66% 130.13%

Report Date: Test Code/ID: 13 Apr-20 20:13 (p 30 of 30) 035505 50308302 / 10-1201-6135

											960 50			12 12 12
OCSPP 850.2	300 C	Chronic Avian Rep	roduction										Wildlife	International
Analysis ID: Analyzed:		4065-3141 Apr-20 20:04	Endpoint: Analysis:		/eight Gair metric-Cor				2.522-92 524	IS Versions Is Level		ETISV	1.9.6	
Batch ID:	03-8	3385-5999	Test Type:	Chro	nic Avian F		Anal	yst:						
Start Date:	14 /	\pr-07	Protocol:	ocs	PP 850.23	300 Chron	nic B	ird	Dilue	ent:				
Ending Date:	11 (Oct-07	Species:	Anas	Platyrhyn	chos			Brine	e:				
Test Length:	180	d Oh	Taxon:						Sour	ce: \	Whistlin	g Wing	js, Inc.	Age: 27w
Data Transfo	rm	Alt I	l yp						NOEL	LOEL	TO	DEL	TU	PM SD
Untransformed	d	C > ⁻	Γ						9.82	32.9	17	.97		67.03%
Williams Mul	tiple (Comparison Test												
Control	vs	Conc-mg ai/k	Test \$	Stat	Critical	MSD	DF	P-Type	P-Value	Decisi	ion(α:5%	6)		
Negative Control		9.82 0.37			1.667	68.7	30	CDF	>0.05	Non-Si	ignifican	t Effec	t	,
		32.9*	2.191		1.739	72.87	29	CDF	<0.05	Signific	cant Effe	ect		
		100*	2.154		1.765	72.74	30	CDF	<0.05	Signific	cant Effe	ect		
		159*	3.435		1.769	75.49	28	CDF	<0.05	Signific	cant Effe	ect		
ANOVA Table	е													
Source		Sum Squares	Mean	Squa	re	DF		F Stat	P-Value	Decisi	ion(α:5%	%)		
Between		218098	54524	.6		4		4.011	0.0054	Signific	cant Effe	ect		
Error		978656	13592	.4		72		<u>8</u>						
Total		1196750				76								
ANOVA Assu	ımptio	ons Tests												
Attribute		Test				Test S	tat	Critical	P-Value	Decisi	ion(α:1%	6)		
Variance	Bartlett Equality of Variance Test					3.305		13.28	0.5081	Equal '	Variance	es		
Distribution Shapiro-Wilk W Normality Test					0.9868		0.9564	0.6095	Norma	al Distrib	ution			

Median

115

106

46

-13

-24.5

Min

-41

-157

-245

-143

-145

Max

281

398

240

298

148

Std Err

28.26

34.19

33.35

27.24

22.82

CV%

100.38%

140.45%

620.94%

408.28%

%Effect

0.00%

13.54%

81.53%

76.30%

-251.66% 130.13%

95% UCL

172.9

170.2

92.32

84.75

15.37

Graphics

0

9.82

32.9

100

159

Conc-mg ai/kg

Code

Count

16

16

15

16

14

Mean

112.6

97.38

20.8

26.69

-33.93

95% LCL

52.38

24.5

-50.72

-31.37

-83.23

